Skip to main content
Log in

Cucurbit[8]uril-assisted peptide assembly for feasible electrochemical assay of histone acetyltransferase activity

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Accumulating findings demonstrate the importance of histone acetyltransferases (HATs) in regulating the acetylation of histones and reveal that their aberrant catalytic activities are involved in the occurrence and progress of numerous diseases. Herein, a feasible electrochemical method is proposed to assay the activity of HAT. The critical elements of the assay method are the hindrance of HAT-catalyzed acetylation against carboxypeptidase Y-catalyzed digestion and cucurbit[8]uril-assisted peptide assembly, which may recruit peptide-templated silver nanoparticles onto the electrode surface, producing significant electrochemical signals. Taking p300 as a model HAT, the assay method is validated to exhibit desirable selectivity, reproducibility, and usability in inhibitor analysis, and allow absolute activity determination in a linear range from 0.1 to 50 nM with a detection limit of 0.055 nM, which is lower than those of previous reports. Therefore, this work may provide an effective tool for HAT activity assay, which will be of great potential in HAT-related fundamental research, disease diagnosis, and drug development in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dekker FJ, Haisma HJ. Histone acetyl transferases as emerging drug targets. Drug Discov Today. 2009;14:942–8.

    Article  CAS  PubMed  Google Scholar 

  2. Legube G, Trouche D. Regulating histone acetyltransferases and deacetylases. EMBO Rep. 2003;4:944–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dekker FJ, van den Bosch T, Martin NI. Small molecule inhibitors of histone acetyltransferases and deacetylases are potential drugs for inflammatory diseases. Drug Discov Today. 2014;19:654–60.

    Article  CAS  PubMed  Google Scholar 

  4. Ma F, Zhang CY. Histone modifying enzymes: novel disease biomarkers and assay development. Expert Rev Mol Diagn. 2016;16:297–306.

    Article  CAS  PubMed  Google Scholar 

  5. Zhang K, Dent SY. Histone modifying enzymes and cancer: going beyond histones. J Cell Biochem. 2005;96:1137–48.

    Article  CAS  PubMed  Google Scholar 

  6. Ghadiali JE, Lowe SB, Stevens MM. Quantum-dot-based FRET detection of histone acetyltransferase activity. Angew Chem Int Ed. 2011;50:3417–20.

    Article  CAS  Google Scholar 

  7. Han Y, Li P, Xu Y, Li H, Song Z, Nie Z, et al. Fluorescent nanosensor for probing histone acetyltransferase activity based on acetylation protection and magnetic graphitic nanocapsules. Small. 2015;11:877–85.

    Article  CAS  PubMed  Google Scholar 

  8. Chen S, Li Y, Hu Y, Han Y, Huang Y, Nie Z, et al. Nucleic acid-mimicking coordination polymer for label-free fluorescent activity assay of histone acetyltransferases. Chem Commun. 2015;51:4469–72.

    Article  CAS  Google Scholar 

  9. He M, Han Z, Qiao J, Ngo L, Xiong M, Zheng Y. A bioorthogonal turn-on fluorescent strategy for the detection of lysine acetyltransferase activity. Chem Commun. 2018;54:5594–7.

    Article  CAS  Google Scholar 

  10. He M, Han Z, Liu L, Zheng YG. Chemical biology approaches for investigating the functions of lysine acetyltransferases. Angew Chem Int Ed. 2018;57:1162–84.

    Article  CAS  Google Scholar 

  11. Felix FS, Angnes L. Electrochemical immunosensors - a powerful tool for analytical applications. Biosens Bioelectron. 2018;102:470–8.

    Article  CAS  PubMed  Google Scholar 

  12. Shumyantseva VV, Suprun EV, Bulko TV, Archakov AI. Electrochemical methods for detection of post-translational modifications of proteins. Biosens Bioelectron. 2014;61:131–9.

    Article  CAS  PubMed  Google Scholar 

  13. Liu T, Yin J, Wang Y, Miao P. Construction of a specific binding peptide based electrochemical approach for sensitive detection of Zn2+. J Electroanal Chem. 2016;783:304–7.

    Article  CAS  Google Scholar 

  14. Jiang Y, Chen XF, Lan LT, Pan Y, Zhu GX, Miao P. Gly–Gly–His tripeptide- and silver nanoparticle-assisted electrochemical evaluation of copper(II) ions in aqueous environment. New J Chem. 2018;42:14733–7.

    Article  CAS  Google Scholar 

  15. Li H, Huang Y, Yu Y, Li TQ, Li GX, Anzai J. Enzymatically regulated peptide pairing and catalysis for the bioanalysis of extracellular prometastatic activities of functionally linked enzymes. Sci Rep. 2016;6:25362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Feng Z, Wang H, Zhou R, Li J, Xu B. Enzyme-instructed assembly and disassembly processes for targeting downregulation in cancer cells. J Am Chem Soc. 2017;139:3950–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. De Sandis E, Ryadnov MG. Peptide self-assembly for nanomaterials: the old new kid on the block. Chem Soc Rev. 2015;44:8288–300.

    Article  Google Scholar 

  18. Burgess NC, Sharp TH, Thomas F, Wood CW, Thomson AR, Zaccai NR, et al. Modular design of self-assembling peptide-based nanotubes. J Am Chem Soc. 2015;137:10554–62.

    Article  CAS  PubMed  Google Scholar 

  19. Moitra P, Kumar K, Kondaiah P, Bhattacharya S. Efficacious anticancer drug delivery mediated by a pH-sensitive self-assembly of a conserved tripeptide derived from tyrosine kinase NGF receptor. Angew Chem Int Ed. 2014;53:1113–7.

    Article  CAS  Google Scholar 

  20. Liu K, Xing RR, Zou QL, Ma GH, Mohwald H, Yan XH. Simple peptide-tuned self-assembly of photosensitizers towards anticancer photodynamic therapy. Angew Chem Int Ed. 2016;55:3036–9.

    Article  CAS  Google Scholar 

  21. Feng Y, Wang H, Zhang J, Song Y, Meng M, Mi J, et al. Bioinspired synthesis of Au nanostructures templated from amyloid β peptide assembly with enhanced catalytic activity. Biomacromolecules. 2018;19:2432–42.

    Article  CAS  PubMed  Google Scholar 

  22. Wu J, Zou R, Wang Q, Xue Y, Wei P, Yang S, et al. A peptide probe for the detection of neurokinin-1 receptor by disaggregation enhanced fluorescence and magnetic resonance signals. Sci Rep. 2014;4:6487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Reches M, Gazit E. Casting metal nanowires within discrete self-assembled peptide nanotubes. Science. 2003;300:625–7.

    Article  CAS  PubMed  Google Scholar 

  24. Yan XH, Zhu P, Li JB. Self-assembly and application of diphenylalanine-based nanostructures. Chem Soc Rev. 2010;39:1877–90.

    Article  CAS  PubMed  Google Scholar 

  25. Zhao J, Tang Y, Cao Y, Chen T, Chen X, Mao X, et al. Amplified electrochemical detection of surface biomarker in breast cancer stem cell using self-assembled supramolecular nanocomposites. Electrochim Acta. 2018;283:1072–8.

    Article  CAS  Google Scholar 

  26. Soum C, Rubio-Albenque S, Fery-Forgues S, Deleris G, Alouini MA, Berthelot T. Supramolecular peptide/surface assembly for monitoring proteinase activity and cancer diagnosis. ACS Appl Mater Interfaces. 2015;7:16967–75.

    Article  CAS  PubMed  Google Scholar 

  27. Chu CW, Ravoo BJ. Hierarchical supramolecular hydrogels: self-assembly by peptides and photo-controlled release via host–guest interaction. Chem Commun. 2017;53:12450–3.

    Article  CAS  Google Scholar 

  28. Xue S, Tan C, Chen M, Cao J, Zhang J, Zhang D, et al. Tumor-targeted supramolecular nanoparticles self-assembled from a ruthenium-β-cyclodextrin complex and an adamantane-functionalized peptide. Chem Commun. 2017;53:842–5.

    Article  CAS  Google Scholar 

  29. Mao X, Li Y, Han P, Wang X, Yang S, Zhang F, et al. One-pot and one-step colorimetric detection of aminopeptidase N activity based on gold nanoparticles-based supramolecular structure. Sens Actuat B Chem. 2018;267:336–41.

    Article  CAS  Google Scholar 

  30. Yan G, Eller MS, Elm C, Larocca CA, Ryu B, Panova IP, et al. Selective inhibition of p300 HAT blocks cell cycle progression, induces cellular senescence, and inhibits the DNA damage response in melanoma cells. J Invest Dermatol. 2013;133:2444–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Miao XY, Yu HZ, Gu Z, Yang LL, Teng JH, Cao Y, et al. Peptide self-assembly assisted signal labeling for an electrochemical assay of protease activity. Anal Bioanal Chem. 2017;409:6723–30.

    Article  CAS  PubMed  Google Scholar 

  32. Hu Y, Chen S, Han Y, Chen H, Wang Q, Nie Z, et al. Unique electrocatalytic activity of a nucleic acid-mimicking coordination polymer for the sensitive detection of coenzyme A and histone acetyltransferase activity. Chem Commun. 2015;51:17611–4.

    Article  CAS  Google Scholar 

  33. Clements A, Poux AN, Lo WS, Pillus L, Berger SL, Marmorstein R. Structural basis for histone and phosphohistone binding by the GCN5 histone acetyltransferase. Mol Cell. 2003;12:461–73.

    Article  CAS  PubMed  Google Scholar 

  34. Han Z, Chou CW, Yang X, Bartlett MG, Zheng YG. Profiling cellular substrates of lysine acetyltransferases GCN5 and p300 with orthogonal labeling and click chemistry. ACS Chem Biol. 2017;12:1547–55.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 81503463), the Science and Technology Planning Project of Taicang (TC2018JC04) and the Natural Science Research Projects of Universities in Jiangsu Province (Project No. 16KJB430037).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Limin Ning or Ya Cao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 240 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, X., Wang, Y., Gu, Z. et al. Cucurbit[8]uril-assisted peptide assembly for feasible electrochemical assay of histone acetyltransferase activity. Anal Bioanal Chem 411, 387–393 (2019). https://doi.org/10.1007/s00216-018-1445-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1445-4

Keywords

Navigation