Skip to main content

Advertisement

Log in

Measuring the bioactivity of anti-IL-6/anti-IL-6R therapeutic antibodies: presentation of a robust reporter gene assay

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

IL-6 has an important role in the pathogenesis of autoimmunity and chronic inflammation. Several mAbs that target IL-6 or the IL-6 receptor (IL-6R) have been established and approved for the treatment of various diseases such as multicentric Castleman's disease and rheumatoid arthritis. Quality control of therapeutic antibodies requires accurate determination of bioactivity. However, current cell-based anti-proliferation assays are tedious, time consuming, and result in high variation. We therefore developed a reporter gene assay (RGA) based on an IL-6-dependent DS-1 cell line that stably expressed the reporter luciferase controlled by the serum-induced element (SIE) response element, which was a key element located downstream of the IL-6 signaling pathway. The RGA method demonstrated good performance characteristics after careful optimization, including high specificity, stability, accuracy, precision, and robustness. It also had superior precision and sensitivity. The assay is simple compared with the traditional anti-proliferation assay. This novel RGA based on the IL-6-IL-6R-STAT3 pathway can be useful, in conjunction with the anti-proliferation bioassay, to determine the bioactivity of anti-IL-6/anti-IL-6R therapeutic mAbs.

The mechanism sketch of the reporter gene assay for the bioactivity determination of anti-IL-6/anti-IL-6Rα mAbs

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hunter CA, Jones SA. IL-6 as a keystone cytokine in health and disease. Nat Immun. 2015;16(5):448–57.

    Article  CAS  Google Scholar 

  2. Venkiteshwaran A. Tocilizumab. MAbs. 2009;1(5):432–8.

    Article  Google Scholar 

  3. Fitzgerald JC, Weiss SL, Maude SL, Barrett DM, Lacey SF, Melenhorst JJ, Shaw P, Berg RA, June CH, Porter DL, Frey NV, Grupp SA, Teachey DT. Cytokine release syndrome after chimeric antigen receptor T cell therapy for acute lymphoblastic leukemia. Crit Care Med. 2017;45(2):e124–31.

    Article  CAS  Google Scholar 

  4. Rubbert-Roth A, Furst DE, Nebesky JM, Jin A, Berber E. A review of recent advances using tocilizumab in the treatment of rheumatic diseases. Rheumatol Ther. 2018;5(1):21–42. 

    Article  Google Scholar 

  5. Deisseroth A, Ko CW, Nie L, Zirkelbach JF, Zhao L, Bullock J, Mehrotra N, Del Valle P, Saber H, Sheth C, Gehrke B, Justice R, Farrell A, Pazdur R. FDA approval: siltuximab for the treatment of patients with multicentric Castleman disease. Clin Cancer Res. 2015;21(5):950–4. 

    Article  CAS  Google Scholar 

  6. Scott LJ. Sarilumab: first global approval. Drugs. 2017;77(6):705–12.

    Article  CAS  Google Scholar 

  7. Miao S, Fan L, Zhao L, Ding D, Liu X, Wang H, Tan WS. Physicochemical and biological characterization of the proposed biosimilar tocilizumab. Biomed Res Int. 2017;2017:4926168.

    Google Scholar 

  8. Smolen JS, Weinblatt ME, Sheng S, Zhuang Y, Hsu B. Sirukumab, a human anti-interleukin-6 monoclonal antibody: a randomised, 2-part (proof-of-concept and dose-finding), phase II study in patients with active rheumatoid arthritis despite methotrexate therapy. Ann Rheum Dis. 2014;73(9):1616–25.

    Article  CAS  Google Scholar 

  9. Genovese MC, Fleischmann R, Furst D, Janssen N, Carter J, Dasgupta B, Bryson J, Duncan B, Zhu W, Pitzalis C, Durez P, Kretsos K. Efficacy and safety of olokizumab in patients with rheumatoid arthritis with an inadequate response to TNF inhibitor therapy: outcomes of a randomized Phase IIb study. Ann Rheum Dis. 2014;73(9):1607–15.

    Article  CAS  Google Scholar 

  10. Weinblatt ME, Mease P, Mysler E, Takeuchi T, Drescher E, Berman A, Xing J, Zilberstein M, Banerjee S, Emery P. The efficacy and safety of subcutaneous clazakizumab in patients with moderate-to-severe rheumatoid arthritis and an inadequate response to methotrexate: results from a multinational, Phase IIb, randomized, double-blind, placebo/active-controlled, dose-ranging study. Arthritis Rheum. 2015;67(10):2591–600.

    Article  Google Scholar 

  11. Gibofsky A. Overview of epidemiology, pathophysiology, and diagnosis of rheumatoid arthritis. Am J Manag Care. 2012;18(13 Suppl):S295–302.

  12. Gaffo A, Saag KG, Curtis JR. Treatment of rheumatoid arthritis. Am J Health Syst Pharm. 2006;63(24):2451–65.

    Article  CAS  Google Scholar 

  13. Hushaw LL, Sawaqed R, Sweis G, Reigle J, Gopal A, Brandt D, Sweis N, Curran J, Niewold TB, Sweiss NJ. Critical appraisal of tocilizumab in the treatment of moderate to severe rheumatoid arthritis. Ther Clin Risk Manag. 2010;6:143–52.

  14. Boers M. Cost-effectiveness of biologics as first-line treatment of rheumatoid arthritis: case closed? Ann Intern Med. 2009;151(9):668–9.

    Article  Google Scholar 

  15. Kim GW, Lee NR, Pi RH, Lim YS, Lee YM, Lee JM, Jeong HS, Chung SH. Arch. Pharm. Res. IL-6 inhibitors for treatment of rheumatoid arthritis: past, present, and future. Arch Pharm Res. 2015;38(5):575–84.

    Article  CAS  Google Scholar 

  16. Nishimoto N, Terao K, Mima T, Nakahara H, Takagi N, Kakehi T. Mechanisms and pathologic significances in increase in serum interleukin-6 (IL-6) and soluble IL-6 receptor after administration of an anti-IL-6 receptor antibody, tocilizumab, in patients with rheumatoid arthritis and Castleman disease. Blood. 2008;112(10):3959–64.

    Article  CAS  Google Scholar 

  17. Blanchetot C, De Jonge N, Desmyter A, Ongenae N, Hofman E, Klarenbeek A, Sadi A, Hultberg A, Kretz-Rommel A, Spinelli S, Loris R, Cambillau C, de Haard H. Structural mimicry of receptor interaction by antagonistic interleukin-6 (IL-6) antibodies. J Biol Chem. 2016;291(26):13846–54.

    Article  CAS  Google Scholar 

  18. Saito S, Suzuki K, Yoshimoto K, Kaneko Y, Matsumoto Y, Yamaoka K, Takeuchi T. A new bioassay for measuring the strength of IL-6/STAT3 signal inhibition by tocilizumab in patients with rheumatoid arthritis. Arthritis Res Ther. 2017;19(1):231.

  19. Suzuki M, Hashizume M, Yoshida H, Mihara M. Anti-inflammatory mechanism of tocilizumab, a humanized anti-IL-6R antibody: effect on the expression of chemokine and adhesion molecule. Rheumatol Int. 2010;30(3):309–15.

    Article  CAS  Google Scholar 

  20. Gao H, Liu L, Zhao Y, Hara H, Chen P, Xu J, Tang J, Wei L, Li Z, Cooper DKC, Cai Z, Mou L. Human IL-6, IL-17, IL-1beta, and TNF-alpha differently regulate the expression of pro-inflammatory related genes, tissue factor, and swine leukocyte antigen class I in porcine aortic endothelial cells. Xenotransplantation. 2017;24(2).

    Article  Google Scholar 

  21. Kudo M, Jono H, Shinriki S, Yano S, Nakamura H, Makino K, Hide T, Muta D, Ueda M, Ota K, Ando Y, Kuratsu J. Antitumor effect of humanized anti-interleukin-6 receptor antibody (tocilizumab) on glioma cell proliferation. Lab Investig J Neurosurg. 2009;111(2):219–25.

    Article  CAS  Google Scholar 

  22. Shimizu S, Hirano T, Yoshioka R, Sugai S, Matsuda T, Taga T, Kishimoto T, Konda S.Interleukin-6 (B-cell stimulatory factor 2)-dependent growth of a Lennert's lymphoma-derived T-cell line (KT-3). Blood. 1988;72(5):1826–8.

  23. Tanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol. 2014;6(10):a016295.

    Article  Google Scholar 

  24. Okada M, Kitahara M, Kishimoto S, Matsuda T, Hirano T, Kishimoto T. IL-6/BSF-2 functions as a killer helper factor in the in vitro induction of cytotoxic T cells. J Immunol. 1988;141(5):1543–9.

    CAS  PubMed  Google Scholar 

  25. Korn T, Bettelli E, Oukka M, Kuchroo VK. IL-17 and Th17 cells. Annu Rev Immunol. 2009;27:485–517.

    Article  CAS  Google Scholar 

  26. Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, Weiner HL, Kuchroo VK. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature. 2006;441(7090):235–8.

    Article  CAS  Google Scholar 

  27. Pesce B, Soto L, Sabugo F, Wurmann P, Cuchacovich M, López MN, Sotelo PH, Molina MC, Aguillón JC, Catalán D. Effect of interleukin-6 receptor blockade on the balance between regulatory T cells and T helper type 17 cells in rheumatoid arthritis patients. Clin Exp Immunol. 2013;171(3):237–42.

    Article  CAS  Google Scholar 

  28. Kishimoto T. Factors affecting B-cell growth and differentiation. Annu Rev Immunol. 1985;3:133–57.

    Article  CAS  Google Scholar 

  29. Heinrich PC, Castell JV, Andus T. Interleukin-6 and the acute phase response. Biochem J. 1990;265(3):621–36.

    Article  CAS  Google Scholar 

  30. Nemeth E, Rivera S, Gabayan V, Keller C, Taudorf S, Pedersen BK, Ganz T. IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J Clin Investig. 2004;113(9):1271–6.

    Article  CAS  Google Scholar 

  31. Nakahara H, Song J, Sugimoto M, Hagihara K, Kishimoto T, Yoshizaki K, Nishimoto N. Anti-interleukin-6 receptor antibody therapy reduces vascular endothelial growth factor production in rheumatoid arthritis. Arthritis Rheum. 2003;48(6):1521–9.

    Article  CAS  Google Scholar 

  32. Yoo JY, Wang W, Desiderio S, Nathans D. Synergistic activity of STAT3 and c-Jun at a specific array of DNA elements in the alpha 2-macroglobulin promoter. J Biol Chem. 2001;276(28):26421–9.

  33. Takeda K, Kaisho T, Yoshida N, Takeda J, Kishimoto T, Akira S. Stat3 activation is responsible for IL-6-dependent T cell proliferation through preventing apoptosis: generation and characterization of T cell-specific Stat3-deficient mice. J Immunol. 1998;161(9):4652–60.

    CAS  PubMed  Google Scholar 

  34. Lu L, Zhu F, Zhang M, Li Y, Drennan AC, Kimpara S, Rumball I, Selzer C, Cameron H, Kellicut A, Kelm A, Wang F, Waldmann TA, Rui L. Gene regulation and suppression of type I interferon signaling by STAT3 in diffuse large B cell lymphoma. Proc Natl Acad Sci U S A. 2018;115(3):E498–505.

    Article  CAS  Google Scholar 

  35. Zhang L, Yang J, Qian J, Li H, Romaguera JE, Kwak LW, Wang M, Yi Q. Role of the microenvironment in mantle cell lymphoma: IL-6 is an important survival factor for the tumor cells. Blood. 2012;120(18):3783–92.

    Article  CAS  Google Scholar 

  36. Bock GH, Long CA, Riley ML, White JD, Kurman CC, Fleisher TA, Tsokos M, Brown M, Serbousek D, Schwietermann WD. Characterization of a new IL-6-dependent human B-lymphoma cell line in long term culture. Cytokine. 1993;5(5):480–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Research of Evaluation of Innovative Biopharmaceuticals and Standardization Technology (one of the subjects of the National Science and Technology Major Projects for ‘Major New Drugs Innovation and Development’) under grant No. 2018ZX09101001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junzhi Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, C., Cao, J., Wang, L. et al. Measuring the bioactivity of anti-IL-6/anti-IL-6R therapeutic antibodies: presentation of a robust reporter gene assay. Anal Bioanal Chem 410, 7067–7075 (2018). https://doi.org/10.1007/s00216-018-1307-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1307-0

Keywords

Navigation