Skip to main content
Log in

The application of UV resonance Raman spectroscopy for the differentiation of clinically relevant Candida species

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Candida-related infections have become a major problem in hospitals. The species identification of yeast is the prerequisite for the initiation of adequate antifungal therapy. In the present study, the connection between inherent UV resonance Raman (RR) spectral profiles of Candida species and taxonomic differences was investigated for the first time. UV RR in combination with statistical modeling was applied to extract taxonomic information from the spectral fingerprints for subsequent differentiation. The identification accuracies of independent batch cultures were determined by applying a leave-one-batch-out cross validation. The quality of differentiation can be divided into three levels. Within a defined taxonomic group comprising the species C. glabrata, C. guilliermondii, and C. haemulonii, the identification accuracy was low. On the next level, the identification results of C. albicans and C. tropicalis were characterized by high sensitivities of 98 and 95% but simultaneously challenged by false-positive predictions due to the misallocation of C. spherica (as C. albicans) and C. viswanathii (as C. tropicalis). The highest level of identification accuracies was reached for the species C. dubliniensis, C. krusei, C. africana, C. novergica, and C. parapsilosis. Reliable identification results were observed with accuracies ranging from 93 up to 100%. The species allocation based on the UV RR spectral profiles could be reproduced by the identification of independent batch cultures. We conclude that the introduced spectroscopic approach is capable of transforming the high-dimensional UV RR data of Candida species into clinically useful decision parameters.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Faergemann J. Atopic dermatitis and fungi. Clin Microbiol Rev. 2002;15(4):545. https://doi.org/10.1128/cmr.15.4.545-563.2002.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Guinea J. Global trends in the distribution of Candida species causing candidemia. Clin Microbiol Infect. 2014;20(Suppl 6):5–10. https://doi.org/10.1111/1469-0691.12539.

    Article  PubMed  Google Scholar 

  3. Havlickova B, Czaika VA, Friedrich M. Epidemiological trends in skin mycoses worldwide. Mycoses. 2008;51(Suppl 4):2–15. https://doi.org/10.1111/j.1439-0507.2008.01606.x.

    Article  PubMed  Google Scholar 

  4. Patel GP, Simon D, Scheetz M, Crank CW, Lodise T, Patel N. The effect of time to antifungal therapy on mortality in Candidemia associated septic shock. Am J Ther. 2009;16(6):508–11.

    Article  PubMed  Google Scholar 

  5. Freydiere A-M, Guinet R, Boiron P. Yeast identification in the clinical microbiology laboratory: phenotypical methods. Sabouraudia. 2001;39(1):9–33.

    Article  CAS  Google Scholar 

  6. Himmelreich U, Somorjai RL, Dolenko B, Lee OC, Daniel HM, Murray R, et al. Rapid identification of Candida species by using nuclear magnetic resonance spectroscopy and a statistical classification strategy. Appl Environ Microb. 2003;69(8):4566–74.

    Article  CAS  Google Scholar 

  7. Amiri-Eliasi B, Fenselau C. Characterization of protein biomarkers desorbed by MALDI from whole fungal cells. Anal Chem. 2001;73(21):5228–31. https://doi.org/10.1021/ac010651t.

    Article  CAS  PubMed  Google Scholar 

  8. Fenselau C, Demirev PA. Characterization of intact microorganisms by MALDI mass spectrometry. Mass Spectrom Rev. 2001;20(4):157–71. https://doi.org/10.1002/mas.10004.

    Article  CAS  PubMed  Google Scholar 

  9. Seyfarth F, Wiegand C, Erhard M, Gräser Y, Elsner P, Hipler UC. Identification of yeast isolated from dermatological patients by MALDI-TOF mass spectrometry. Mycoses. 2012;55(3):276–80.

    Article  CAS  PubMed  Google Scholar 

  10. Vargha M, Takáts Z, Konopka A, Nakatsu CH. Optimization of MALDI-TOF MS for strain level differentiation of Arthrobacter isolates. J Microbiol Methods. 2006;66(3):399–409.

    Article  CAS  PubMed  Google Scholar 

  11. Ibelings MS, Maquelin K, Endtz HP, Bruining HA, Puppels GJ. Rapid identification of Candida spp. in peritonitis patients by Raman spectroscopy. Clin Microbiol Infect. 2005;11(5):353–8.

    Article  CAS  PubMed  Google Scholar 

  12. Kohler A, Bocker U, Shapaval V, Forsmark A, Andersson M, Warringer J, et al. High-throughput biochemical fingerprinting of Saccharomyces cerevisiae by Fourier transform infrared spectroscopy. PLoS One. 2015;10(2):e0118052. https://doi.org/10.1371/journal.pone.0118052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Maquelin K, Choo-Smith LP, Endtz HP, Bruining HA, Puppels GJ. Rapid identification of Candida species by confocal Raman micro spectroscopy. J Clin Microbiol. 2002;40(2):594–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rösch P, Harz M, Schmitt M, Popp J. Raman spectroscopic identification of single yeast cells. J Raman Spectrosc. 2005;36(5):377–9.

    Article  CAS  Google Scholar 

  15. Choo-Smith LP, Maquelin K, van Vreeswijk T, Bruining HA, Puppels GJ, Ngo Thi NA, et al. Investigating microbial (micro)colony heterogeneity by vibrational spectroscopy. Appl Environ Microbiol. 2001;67(4):1461–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Maquelin K, Choo-Smith LP, van Vreeswijk T, Endtz HP, Smith B, Bennett R, et al. Raman spectroscopic method for identification of clinically relevant microorganisms growing on solid culture medium. Anal Chem. 2000;72(1):12–9.

    Article  CAS  PubMed  Google Scholar 

  17. Münchberg U, Rösch P, Bauer M, Popp J. Raman spectroscopic identification of single bacterial cells under antibiotic influence. Anal Bioanal Chem. 2014;406(13):3041–50. https://doi.org/10.1007/s00216-014-7747-2.

    Article  CAS  PubMed  Google Scholar 

  18. Petry R, Schmitt M, Popp J. Raman spectroscopy—a prospective tool in the life sciences. ChemPhysChem. 2003;4(1):14–30. https://doi.org/10.1002/cphc.200390004.

    Article  CAS  PubMed  Google Scholar 

  19. Rösch P, Harz M, Peschke KD, Ronneberger O, Burkhardt H, Popp J. Identification of single eukaryotic cells with micro-Raman spectroscopy. Biopolymers. 2006;82(4):312–6.

    Article  CAS  PubMed  Google Scholar 

  20. Rösch P, Harz M, Schmitt M, Peschke KD, Ronneberger O, Burkhardt H, et al. Chemotaxonomic identification of single bacteria by micro-Raman spectroscopy: application to clean-room-relevant biological contaminations. Appl Environ Microbiol. 2005;71(3):1626–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lorenz B, Wichmann C, Stockel S, Rosch P, Popp J. Cultivation-free Raman spectroscopic investigations of bacteria. Trends Microbiol. 2017;25(5):413–24. https://doi.org/10.1016/j.tim.2017.01.002.

    Article  CAS  PubMed  Google Scholar 

  22. Neugebauer U, Rosch P, Popp J. Raman spectroscopy towards clinical application: drug monitoring and pathogen identification. Int J Antimicrob Agents. 2015;46 Suppl 1:S35–9. https://doi.org/10.1016/j.ijantimicag.2015.10.014.

    Article  CAS  PubMed  Google Scholar 

  23. Pahlow S, Meisel S, Cialla-May D, Weber K, Rosch P, Popp J. Isolation and identification of bacteria by means of Raman spectroscopy. Adv Drug Del Rev. 2015;89:105–20. https://doi.org/10.1016/j.addr.2015.04.006.

    Article  CAS  Google Scholar 

  24. Silge A, Schumacher W, Rosch P, Da Costa PA, Gerard C, Popp J. Identification of water-conditioned Pseudomonas aeruginosa by Raman microspectroscopy on a single cell level. Syst Appl Microbiol. 2014;37(5):360–7. https://doi.org/10.1016/j.syapm.2014.05.007.

    Article  CAS  PubMed  Google Scholar 

  25. Stockel S, Kirchhoff J, Neugebauer U, Rosch P, Popp J. The application of Raman spectroscopy for the detection and identification of microorganisms. J Raman Spectrosc. 2016;47(1):89–109. https://doi.org/10.1002/jrs.4844.

    Article  CAS  Google Scholar 

  26. Abu-Absi NR, Kenty BM, Cuellar ME, Borys MC, Sakhamuri S, Strachan DJ, et al. Real time monitoring of multiple parameters in mammalian cell culture bioreactors using an in-line Raman spectroscopy probe. Biotechnol Bioeng. 2011;108(5):1215–21. https://doi.org/10.1002/bit.23023.

    Article  CAS  PubMed  Google Scholar 

  27. Ciobotă V, Burkhardt E-M, Schumacher W, Rösch P, Küsel K, Popp J. The influence of intracellular storage material on bacterial identification by means of Raman spectroscopy. Anal Bioanal Chem. 2010;397(7):2929–37. https://doi.org/10.1007/s00216-010-3895-1.

    Article  CAS  PubMed  Google Scholar 

  28. Stockel S, Meisel S, Bohme R, Elschner M, Rosch P, Popp J. Effect of supplementary manganese on the sporulation of Bacillus endospores analysed by Raman spectroscopy. J Raman Spectrosc. 2009;40(11):1469–77. https://doi.org/10.1002/jrs.2292.

    Article  CAS  Google Scholar 

  29. Stockel S, Meisel S, Lorenz B, Kloss S, Henk S, Dees S, et al. Raman spectroscopic identification of Mycobacterium tuberculosis. J Biophotonics. 2017;10(5):727–34. https://doi.org/10.1002/jbio.201600174.

    Article  CAS  PubMed  Google Scholar 

  30. Gaus K, Rosch P, Petry R, Peschke KD, Ronneberger O, Burkhardt H, et al. Classification of lactic acid bacteria with UV-resonance Raman spectroscopy. Biopolymers. 2006;82(4):286–90. https://doi.org/10.1002/bip.20448.

    Article  CAS  PubMed  Google Scholar 

  31. Manoharan R, Ghiamati E, Dalterio RA, Britton KA, Nelson WH, Sperry JF. UV resonance Raman-spectra of bacteria, bacterial-spores, protoplasts and calcium dipicolinate. J Microbiol Methods. 1990;11(1):1–15. https://doi.org/10.1016/0167-7012(90)90042-5.

    Article  CAS  Google Scholar 

  32. Nelson WH, Manoharan R, Sperry JF. UV resonance Raman studies of bacteria. Appl Spectrosc Rev. 1992;27(1):67–124. https://doi.org/10.1080/05704929208018270.

    Article  Google Scholar 

  33. Wu Q, Hamilton T, Nelson WH, Elliott S, Sperry JF, Wu M. UV Raman spectral intensities of E. coli and other bacteria excited at 228.9, 244.0, and 248.2 nm. Anal Chem. 2001;73(14):3432–40. https://doi.org/10.1021/ac001268b.

    Article  CAS  PubMed  Google Scholar 

  34. Asher SA. UV resonance Raman spectroscopy for analytical, physical, and biophysical chemistry. Anal Chem. 1993;65(2):59A–66A. https://doi.org/10.1021/ac00050a717.

    Article  CAS  Google Scholar 

  35. Harz M, Claus RA, Bockmeyer CL, Baum M, Rosch P, Kentouche K, et al. UV-resonance Raman spectroscopic study of human plasma of healthy donors and patients with thrombotic microangiopathy. Biopolymers. 2006;82(4):317–24.

    Article  CAS  PubMed  Google Scholar 

  36. Lopez-Diez EC, Goodacre R. Characterization of microorganisms using UV resonance Raman spectroscopy and chemometrics. Anal Chem. 2004;76(3):585–91. https://doi.org/10.1021/ac035110d.

    Article  CAS  PubMed  Google Scholar 

  37. Team RC. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2014. http://www.R-project.org/.

    Google Scholar 

  38. Guo S, Bocklitz T, Neugebauer U, Popp J. Common mistakes in cross-validating classification models. Anal Methods. 2017;9(30):4410–7. https://doi.org/10.1039/c7ay01363a.

    Article  Google Scholar 

  39. Fodor SPA, Copeland RA, Grygon CA, Spiro TG. Deep-ultraviolet Raman excitation profiles and vibronic scattering mechanisms of phenylalanine, tyrosine, and tryptophan. J Am Chem Soc. 1989;111(15):5509–18. https://doi.org/10.1021/Ja00197a001.

    Article  CAS  Google Scholar 

  40. Jarvis RM, Goodacre R. Ultra-violet resonance Raman spectroscopy for the rapid discrimination of urinary tract infection bacteria. FEMS Microbiol Lett. 2004;232(2):127–32. https://doi.org/10.1016/s0378-1097(04)00040-0.

    Article  CAS  PubMed  Google Scholar 

  41. Tarcea N, Harz M, Rosch P, Frosch T, Schmitt M, Thiele H, et al. UV Raman spectroscopy—a technique for biological and mineralogical in situ planetary studies. Spectrochim Acta A Mol Biomol Spectrosc. 2007;68(4):1029–35.

    Article  CAS  PubMed  Google Scholar 

  42. Wen ZQ, Thomas GJ. UV resonance Raman spectroscopy of DNA and protein constituents of viruses: assignments and cross sections for excitations at 257, 244, 238, and 229 nm. Biopolymers. 1998;45(3):247–56. https://doi.org/10.1002/(sici)1097-0282(199803)45:3<247::aid-bip7>3.0.co;2-r.

    Article  CAS  PubMed  Google Scholar 

  43. Tsuboi M, Takahashi S, Harada I. CHAPTER 11—Infrared and Raman spectra of nucleic acids—vibrations in the base-residues A2 - Duchesne, J. Structural studies on nucleic acids and other biopolymers. Academic Press; 1973. p. 91–145.

  44. Walter A, Schumacher W, Bocklitz T, Reinicke M, Rosch P, Kothe E, et al. From bulk to single-cell classification of the filamentous growing Streptomyces bacteria by means of Raman spectroscopy. Appl Spectrosc. 2011;65(10):1116–25.

    Article  CAS  PubMed  Google Scholar 

  45. Chang C-C, Lin C-J. LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol. 2011;2(3):1–27. https://doi.org/10.1145/1961189.1961199.

    Article  Google Scholar 

  46. Kloß S, Rösch P, Pfister W, Kiehntopf M, Popp J. Toward culture-free Raman spectroscopic identification of pathogens in ascitic fluid. Anal Chem. 2015;87(2):937–43. https://doi.org/10.1021/ac503373r.

    Article  CAS  PubMed  Google Scholar 

  47. Calandra T, Roberts JA, Antonelli M, Bassetti M, Vincent JL. Diagnosis and management of invasive candidiasis in the ICU: an updated approach to an old enemy. Crit Care. 2016;20(1):125. https://doi.org/10.1186/s13054-016-1313-6.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding sources

We gratefully acknowledge the federal ministry of education and research, Germany (BMBF) for financial support under the following codes: FastDiagnosis (13N11350) and InterSept (13N13852).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Uta-Christina Hipler or Jürgen Popp.

Ethics declarations

The patient samples were collected after obtaining informed consent regarding the mycological diagnostic and evidence comparison. This was approved by the Research Ethics Committee of Jena University Hospital (2344-07/08 and 1647-11/05).

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 1223 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silge, A., Heinke, R., Bocklitz, T. et al. The application of UV resonance Raman spectroscopy for the differentiation of clinically relevant Candida species. Anal Bioanal Chem 410, 5839–5847 (2018). https://doi.org/10.1007/s00216-018-1196-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1196-2

Keywords

Navigation