Skip to main content
Log in

Monitoring dynamic release of intracellular hydrogen peroxide through a microelectrode based enzymatic biosensor

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

A Correction to this article was published on 05 July 2018

This article has been updated

Abstract

A high sensitive and selective hydrogen peroxide (H2O2) biosensor was fabricated on the basis of reduced hemoglobin (Hb) and single-walled carbon nanotubes (SWCNTs) for detecting the release of H2O2 from living HepG2 cancer cells in the process of the in situ biosynthesis of ZnO quantum. The modification of carbon fiber microelectrode (CFME) was carried out by physical adsorption. By the scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS), the dense cover of surface and successful immobilization were characterized. Electrochemical investigation demonstrates that the as-prepared modified microelectrode showed a quasi-reversible process toward the reduction of H2O2, which exhibited a linear range from 0.51 to 10.6 μM, with a limit of detection of 0.23 μM. This microelectrode biosensor was applied for the quantification of the change of H2O2 concentration released from HepG2 cells through the in situ biosynthesis of ZnO quantum dots, which was further confirmed by the fluorescence staining.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

  • 05 July 2018

    The authors would like to call the reader’s attention to the fact that unfortunately Alberto Pasquarelli’s and Kay-Eberhard Gottschalk’s affiliations were wrong in the original publication.

References

  1. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39(1):44–84.

    Article  CAS  PubMed  Google Scholar 

  2. Chang H, Wang X, Shiu K-K, Zhu Y, Wang J, Li Q, et al. Layer-by-layer assembly of graphene, au and poly (toluidine blue O) films sensor for evaluation of oxidative stress of tumor cells elicited by hydrogen peroxide. Biosens Bioelectron. 2013;41:789–94.

    Article  CAS  PubMed  Google Scholar 

  3. Roberts JG, Hamilton KL, Sombers LA. Comparison of electrode materials for the detection of rapid hydrogen peroxide fluctuations using background-subtracted fast scan cyclic voltammetry. Analyst. 2011;136(17):3550–6.

    Article  CAS  PubMed  Google Scholar 

  4. Valko M, Izakovic M, Mazur M, Rhodes CJ, Telser J. Role of oxygen radicals in DNA damage and cancer incidence. Mol Cell Biochem. 2004;266(1–2):37–56.

    Article  CAS  PubMed  Google Scholar 

  5. Behl C, Davis J, Lesley R, Schubert D. Hydrogen peroxide mediates amyloid Β protein toxicity. Cell. 1994;77(6):817–27.

    Article  CAS  PubMed  Google Scholar 

  6. Sultana R, Butterfield DA. Role of oxidative stress in the progression of Alzheimer's disease. J Alzheimers Dis. 2010;19(1):341–53.

    Article  CAS  PubMed  Google Scholar 

  7. Weisskopf M, O'reilly E, Chen H, Schwarzschild M, Ascherio A. Plasma urate and risk of Parkinson's disease. Am J Epidemiol. 2007;166(5):561–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brieger K, Schiavone S, Miller FJ Jr, Krause K-H. Reactive oxygen species: from health to disease. Swiss Med Wkly. 2012;142:w13659.

    CAS  PubMed  Google Scholar 

  9. Pryor WA. Vitamin E and heart disease: basic science to clinical intervention trials. Free Radic Biol Med. 2000;28(1):141–64.

    Article  CAS  PubMed  Google Scholar 

  10. Miller EW, Chang CJ. Fluorescent probes for nitric oxide and hydrogen peroxide in cell signaling. Curr Opin Chem Biol. 2007;11(6):620–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Paulsen CE, Carroll KS. Orchestrating redox signaling networks through regulatory cysteine switches. ACS Chem Biol. 2009;5(1):47–62.

    Article  CAS  Google Scholar 

  12. Matés JM, Segura JA, Alonso FJ, Márquez J. Intracellular redox status and oxidative stress: implications for cell proliferation, apoptosis, and carcinogenesis. Arch Toxicol. 2008;82(5):273–99.

    Article  CAS  PubMed  Google Scholar 

  13. Miller EW, Dickinson BC, Chang CJ. Aquaporin-3 mediates hydrogen peroxide uptake to regulate downstream intracellular signaling. Proc Natl Acad Sci. 2010;107(36):15681–6.

    Article  PubMed  Google Scholar 

  14. Yao S, Xu J, Wang Y, Chen X, Xu Y, Hu S. A highly sensitive hydrogen peroxide Amperometric sensor based on MnO2 nanoparticles and Dihexadecyl hydrogen phosphate composite film. Anal Chim Acta. 2006;557(1–2):78–84.

    Article  CAS  Google Scholar 

  15. Wang K, Liu Q, Wu X-Y, Guan Q-M, Li H-N. Graphene enhanced electrochemiluminescence of Cds nanocrystal for H2O2 sensing. Talanta. 2010;82(1):372–6.

    Article  CAS  PubMed  Google Scholar 

  16. Wen F, Dong Y, Feng L, Wang S, Zhang S, Zhang X. Horseradish peroxidase functionalized fluorescent gold nanoclusters for hydrogen peroxide sensing. Anal Chem. 2011;83(4):1193–6.

    Article  CAS  PubMed  Google Scholar 

  17. Nogueira RFP, Oliveira MC, Paterlini WC. Simple and fast spectrophotometric determination of H2O2 in photo-Fenton reactions using Metavanadate. Talanta. 2005;66(1):86–91.

    Article  CAS  PubMed  Google Scholar 

  18. Wightman RM. Probing cellular chemistry in biological systems with microelectrodes. Science. 2006;311(5767):1570–4.

    Article  CAS  PubMed  Google Scholar 

  19. Forster RJ. Microelectrodes: new dimensions in electrochemistry. Chem Soc Rev. 1994;23(4):289–97.

    Article  CAS  Google Scholar 

  20. Huffman ML, Venton BJ. Carbon-Fiber microelectrodes for in vivo applications. Analyst. 2009;134(1):18–24.

    Article  CAS  PubMed  Google Scholar 

  21. Sanford AL, Morton SW, Whitehouse KL, Oara HM, Lugo-Morales LZ, Roberts JG, et al. Voltammetric detection of hydrogen peroxide at carbon fiber microelectrodes. Anal Chem. 2010;82(12):5205–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wu Z, Chen L, Shen G, Yu R. Platinum nanoparticle-modified carbon fiber ultramicroelectrodes for mediator-free biosensing. Sensors Actuators B Chem. 2006;119(1):295–301.

    Article  CAS  Google Scholar 

  23. Ross AE, Venton BJ. Nafion–Cnt coated carbon-Fiber microelectrodes for enhanced detection of adenosine. Analyst. 2012;137(13):3045–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wen Z, Ci S, Li J. Pt nanoparticles inserting in carbon nanotube arrays: nanocomposites for glucose biosensors. J Phys Chem C. 2009;113(31):13482–7.

    Article  CAS  Google Scholar 

  25. Zhang Y, Bai X, Wang X, Shiu K-K, Zhu Y, Jiang H. Highly sensitive graphene–Pt nanocomposites Amperometric biosensor and its application in living cell H2O2 detection. Anal Chem. 2014;86(19):9459–65.

    Article  CAS  PubMed  Google Scholar 

  26. Li C, Liu X, Zhang Y, Chen Y, Du T, Jiang H, et al. A novel nonenzymatic biosensor for evaluation of oxidative stress based on nanocomposites of graphene blended with cui. Anal Chim Acta. 2016;933:66–74.

    Article  CAS  PubMed  Google Scholar 

  27. Li Y, Zhang J-J, Xuan J, Jiang L-P, Zhu J-J. Fabrication of a novel nonenzymatic hydrogen peroxide sensor based on Se/Pt nanocomposites. Electrochem Commun. 2010;12(6):777–80.

    Article  CAS  Google Scholar 

  28. Kafi A, Yin F, Shin H-K, Kwon Y-S. Hydrogen peroxide biosensor based on DNA–Hb modified gold electrode. Thin Solid Films. 2006;499(1–2):420–4.

    Article  CAS  Google Scholar 

  29. Patolsky F, Weizmann Y, Willner I. Long-range electrical contacting of redox enzymes by Swcnt connectors. Angew Chem Int Ed. 2004;43(16):2113–7.

    Article  CAS  Google Scholar 

  30. Guiseppi-Elie A, Lei C, Baughman RH. Direct Electron transfer of glucose oxidase on carbon nanotubes. Nanotechnology. 2002;13(5):559.

    Article  CAS  Google Scholar 

  31. Yao Y, Shiu K-K. Electron-transfer properties of different carbon nanotube materials, and their use in glucose biosensors. Anal Bioanal Chem. 2007;387(1):303–9.

    Article  CAS  PubMed  Google Scholar 

  32. Yagati AK, Choi JW. Protein based electrochemical biosensors for H2o2 detection towards clinical diagnostics. Electroanalysis. 2014;26(6):1259–76.

    Article  CAS  Google Scholar 

  33. Ren QQ, Yuan XJ, Huang XR, Wen W, Zhao YD, Chen W. In vivo monitoring of oxidative burst on Aloe under salinity stress using hemoglobin and single-walled carbon nanotubes modified carbon fiber ultramicroelectrode. Biosens Bioelectron. 2013;50:318–24.

    Article  CAS  PubMed  Google Scholar 

  34. Chen W, Cai S, Ren QQ, Wen W, Zhao Y-D. Recent advances in electrochemical sensing for hydrogen peroxide: a review. Analyst. 2012;137(1):49–58.

    Article  CAS  PubMed  Google Scholar 

  35. Du T, Zhao C, ur Rehman F, Lai L, Li X, Sun Y, et al. Rapid and multimodal in vivo bioimaging of cancer cells through in situ biosynthesis of Zn&Fe nanoclusters. Nano Res. 2017;10(8):2626–32.

    Article  CAS  Google Scholar 

  36. Simizu S, Takada M, Umezawa K, Imoto M. Requirement of caspase-3 (-like) protease-mediated hydrogen peroxide production for apoptosis induced by various anticancer drugs. J Biol Chem. 1998;273(41):26900–7.

    Article  CAS  PubMed  Google Scholar 

  37. Fan Y, Yang H, Liu X, Zhu H, Zou G. Preparation and study on radar absorbing materials of nickel-coated carbon fiber and flake graphite. J Alloys Compd. 2008;461(1):490–4.

    Article  CAS  Google Scholar 

  38. Song S, Dong S. Spectroelectrochemistry of the quasi-reversible reduction and oxidation of hemoglobin at a methylene blue adsorbed modified electrode. J Electroanal Chem Interfac. 1988;253(2):337–46.

    Article  Google Scholar 

  39. Yan Y, Zheng W, Zhang M, Wang L, Su L, Mao L. Bioelectrochemically functional Nanohybrids through co-assembling of proteins and surfactants onto carbon nanotubes: facilitated electron transfer of assembled proteins with enhanced faradic response. Langmuir. 2005;21(14):6560–6.

    Article  CAS  PubMed  Google Scholar 

  40. Lu Q, Hu S, Pang D, He Z. Direct electrochemistry and electrocatalysis with hemoglobin in water-soluble quantum dots film on glassy carbon electrode. Chem Commun. 2005;20:2584–5.

    Article  CAS  Google Scholar 

  41. Meites L, Delahay P. Polarographic techniques. J Electrochem Soc. 1966;113(5):124C.

    Article  Google Scholar 

  42. Zhang XW, Qiu QF, Jiang H, Zhang FL, Liu YL, Amatore C, et al. Real-time intracellular measurements of Ros and Rns in living cells with single core–shell nanowire electrodes. Angew Chem Int Ed. 2017;56(42):12997–3000.

    Article  CAS  Google Scholar 

  43. Kamin RA, Wilson GS. Rotating ring-disk enzyme electrode for biocatalysis kinetic studies and characterization of the immobilized enzyme layer. Anal Chem. 1980;52(8):1198–205.

    Article  CAS  Google Scholar 

  44. Sun W, Rf G, Jiao K. Electrochemistry and electrocatalysis of a Nafion/Nano-Caco3/Hb film modified carbon ionic liquid electrode using Bmimpf6 as binder. Electroanalysis. 2007;19(13):1368–74.

    Article  CAS  Google Scholar 

  45. Wang H, Guan R, Fan C, Zhu D, Li G. A hydrogen peroxide biosensor based on the bioelectrocatalysis of hemoglobin incorporated in a Kieselgubr film. Sensors Actuators B Chem. 2002;84(2–3):214–8.

    Article  CAS  Google Scholar 

  46. He R, Tang H, Jiang D. Chen H-y. Electrochemical visualization of intracellular hydrogen peroxide at single cells. Anal Chem. 2016;88(4):2006–9.

    Article  CAS  PubMed  Google Scholar 

  47. Davey MW, Montagu MV, Inzé D, Sanmartin M, Kanellis A, Smirnoff N, et al. Plant L-ascorbic acid: chemistry, function, metabolism, bioavailability and effects of processing. J Sci Food Agric. 2000;80(7):825–60.

    Article  CAS  Google Scholar 

  48. Chen J, He Z, Liu H, Cha C. Electrochemical determination of reduced glutathione (Gsh) by applying the powder microelectrode technique. J Electroanal Chem. 2006;588(2):324–30.

    Article  CAS  Google Scholar 

  49. Jones R, Morice A. Hydrogen peroxide—an intracellular signal in the pulmonary circulation: involvement in hypoxic pulmonary vasoconstriction. Pharmacol Ther. 2000;88(2):153–61.

    Article  CAS  PubMed  Google Scholar 

  50. Gorman A, McGowan A, Cotter TG. Role of peroxide and superoxide anion during tumour cell apoptosis. FEBS Lett. 1997;404(1):27–33.

    Article  CAS  PubMed  Google Scholar 

  51. Enami S, Sakamoto Y, Colussi AJ. Fenton chemistry at aqueous interfaces. Proc Natl Acad Sci. 2014;111(2):623–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by the National High-tech R&D Program and National Key Research & Development Program of China (Nos. 2017YFA0205301), and the National Natural Science Foundation of China (Nos. 91753106, 81325011, 21327902).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuemei Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Ruan, J., Liu, W. et al. Monitoring dynamic release of intracellular hydrogen peroxide through a microelectrode based enzymatic biosensor. Anal Bioanal Chem 410, 4509–4517 (2018). https://doi.org/10.1007/s00216-018-1108-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1108-5

Keywords

Navigation