Skip to main content
Log in

Natural deep eutectic solvents as the major mobile phase components in high-performance liquid chromatography—searching for alternatives to organic solvents

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Over the past six decades, acetonitrile (ACN) has been the most employed organic modifier in reversed-phase high-performance liquid chromatography (RP-HPLC), followed by methanol (MeOH). However, from the growing environmental awareness that leads to the emergence of “green analytical chemistry,” new research has emerged that includes finding replacements to problematic ACN because of its low sustainability. Deep eutectic solvents (DES) can be produced from an almost infinite possible combinations of compounds, while being a “greener” alternative to organic solvents in HPLC, especially those prepared from natural compounds called natural DES (NADES). In this work, the use of three NADES as the main organic component in RP-HPLC, rather than simply an additive, was explored and compared to the common organic solvents ACN and MeOH but additionally to the greener ethanol for separating two different mixtures of compounds, one demonstrating the elution of compounds with increasing hydrophobicity and the other comparing molecules of different functionality and molar mass. To utilize NADES as an organic modifier and overcome their high viscosity monolithic columns, temperatures at 50 °C and 5% ethanol in the mobile phase were used. NADES are shown to give chromatographic performances in between those observed for ACN and MeOH when eluotropic strength, resolution, and peak capacity were taken into consideration, while being less environmentally impactful as shown by the HPLC-Environmental Assessment Tool (HPLC-EAT) metric. With the development of proper technologies, DES could open a new class of mobile phases increasing the possibilities of new separation selectivities while reducing the environmental impact of HPLC analyses.

Natural deep eutectic solvents versus traditional solvents in HPLC

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Yuan X, Richter BE, Jiang K, Boniface KJ, Cormier A, Sanders CA, et al. Carbonated water for the separation of carboxylic compounds: a chromatography approach. Green Chem. 2018;20:440–8.

    Article  CAS  Google Scholar 

  2. Welch CJ, Nowak T, Joyce LA, Regalado EL. Cocktail chromatography: enabling the migration of HPLC to nonlaboratory environments. ACS Sustain Chem Eng. 2015;3:1000–9.

    Article  CAS  Google Scholar 

  3. Funari CS, Carneiro RL, Cavalheiro AJ, Hilder EF. A trade off between separation, detection and sustainability in liquid chromatographic fingerprinting. J Chromatogr A. 2014;1354:34–42.

    Article  CAS  PubMed  Google Scholar 

  4. Fritz R, Ruth W, Kragl U. Assessment of acetone as an alternative to acetonitrile in peptide analysis by liquid chromatography/mass spectrometry. Rapid Commun Mass Spectrom. 2009;23:2139–45.

    Article  CAS  PubMed  Google Scholar 

  5. Welch CJ, Wu N, Biba M, Hartman R, Brkovic T, Gong X, et al. Greening analytical chromatography. TrAC Trends Anal Chem. 2010;29:667–80.

    Article  CAS  Google Scholar 

  6. Płotka J, Tobiszewski M, Sulej AM, Kupska M, Górecki T, Namieśnik J. Green chromatography. J Chromatogr A. 2013;1307:1–20.

    Article  CAS  PubMed  Google Scholar 

  7. Koel M. Do we need green analytical chemistry? Green Chem. 2016;18:923–31.

    Article  CAS  Google Scholar 

  8. Olives AI, González-Ruiz V, Martín MA. Sustainable and eco-friendly alternatives for liquid chromatographic analysis. ACS Sustain Chem Eng. 2017;5:5618–34.

    Article  CAS  Google Scholar 

  9. Tobiszewski M, Namieśnik J, Pena-Pereira F. Environmental risk-based ranking of solvents using the combination of a multimedia model and multi-criteria decision analysis. Green Chem. 2017;19:1034–42.

    Article  CAS  Google Scholar 

  10. Prat D, Wells A, Hayler J, Sneddon H, McElroy CR, Abou-Shehada S, et al. CHEM21 selection guide of classical- and less classical-solvents. Green Chem. 2015;18:288–96.

    Article  Google Scholar 

  11. Kittell JE Paul P, Arnold D, Neyer D, DeLand P, Rehm J (2008) Micro-scale HPLC generates < 1% of the solvent waste of conventional analytical LC. Paper presented at the the 12th annual green chemistry and engineering conference, Washington DC, USA

  12. Armenta S, de la Guardia M. Green chromatography for the analysis of foods of animal origin. TrAC Trends Anal Chem. 2016;80:517–30.

    Article  CAS  Google Scholar 

  13. Welch CJ, Brkovic T, Schafer W, Gong X. Performance to burn? Re-evaluating the choice of acetonitrile as the platform solvent for analytical HPLC. Green Chem. 2009;11:1232–8.

    Article  CAS  Google Scholar 

  14. Gaber Y, Tornvall U, Kumar MA, Ali Amin M, Hatti-Kaul R. HPLC-EAT (Environmental Assessment Tool): a tool for profiling safety, health and environmental impacts of liquid chromatography methods. Green Chem. 2011;13:2021–5.

    Article  CAS  Google Scholar 

  15. Tobiszewski M. Metrics for green analytical chemistry. Anal Methods. 2016;8:2993–9.

    Article  CAS  Google Scholar 

  16. Funari CS, Carneiro RL, Khandagale MM, Cavalheiro AJ, Hilder EF. Acetone as a greener alternative to acetonitrile in liquid chromatographic fingerprinting. J Sep Sci. 2015;38:1458–65.

    Article  CAS  PubMed  Google Scholar 

  17. Lesellier E, West C. The many faces of packed column supercritical fluid chromatography—a critical review. J Chromatogr A. 2015;1382:2–46.

    Article  CAS  PubMed  Google Scholar 

  18. Vera CM, Shock D, Dennis GR, Farrell W, Shalliker RA. Comparing the selectivity and chiral separation of D- and L-fluorenylmethyloxycarbonyl chloride protected amino acids in analytical high performance liquid chromatography and supercritical fluid chromatography; evaluating throughput, economic and environmental impact. J Chromatogr A. 2017;1493:10–8.

    Article  CAS  PubMed  Google Scholar 

  19. Yang Y. Subcritical water chromatography: a green approach to high-temperature liquid chromatography. J Sep Sci. 2007;30:1131–40.

    Article  CAS  PubMed  Google Scholar 

  20. Alghoul ZM, Ogden PB, Dorsey JG. Characterization of the polarity of subcritical water. J Chromatogr A. 2017;1486:42–9.

    Article  CAS  PubMed  Google Scholar 

  21. El-Shaheny RN, El-Maghrabey MH, Belal FF. Micellar liquid chromatography from green analysis perspective. Open Chem. 2015;13:877–92.

    Article  CAS  Google Scholar 

  22. Soares B, Passos H, Freire CSR, Coutinho JAP, Silvestre AJD, Freire MG. Ionic liquids in chromatographic and electrophoretic techniques: toward additional improvements in the separation of natural compounds. Green Chem. 2016;18:4582–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Han D, Row KH. Recent applications of ionic liquids in separation technology. Molecules. 2010;15:2405–26.

    Article  CAS  PubMed  Google Scholar 

  24. Dai Y, van Spronsen J, Witkamp GJ, Verpoorte R, Choi YH. Natural deep eutectic solvents as new potential media for green technology. Anal Chim Acta. 2013;766:61–8.

    Article  CAS  PubMed  Google Scholar 

  25. Francisco M, Van Den Bruinhorst A, Kroon MC. Low-transition-temperature mixtures (LTTMs): a new generation of designer solvents. Angew Chem Int Ed. 2013;52:3074–85.

    Article  CAS  Google Scholar 

  26. Espino M, de los Ángeles Fernández M, FJV G, Silva MF. Natural designer solvents for greening analytical chemistry. TrAC Trends Anal Chem. 2016;76:126–36.

    Article  CAS  Google Scholar 

  27. Choi YH, van Spronsen J, Dai Y, Verberne M, Hollmann F, Arends IWCE, et al. Are natural deep eutectic solvents the missing link in understanding cellular metabolism and physiology? Plant Physiol. 2011;156:1701–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mbous YP, Hayyan M, Wong WF, Looi CY, Hashim MA. Unraveling the cytotoxicity and metabolic pathways of binary natural deep eutectic solvent systems. Sci Rep. 2017;7:41257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hayyan M, Mbous YP, Looi CY, Wong WF, Hayyan A, Salleh Z, et al. Natural deep eutectic solvents: cytotoxic profile. Springerplus. 2016;5:913.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Dai Y, Witkamp GJ, Verpoorte R, Choi YH. Natural deep eutectic solvents as a new extraction media for phenolic metabolites in carthamus tinctorius L. Anal Chem. 2013;85:6272–8.

    Article  CAS  PubMed  Google Scholar 

  31. Wei Z, Qi X, Li T, Luo M, Wang W, Zu Y, et al. Application of natural deep eutectic solvents for extraction and determination of phenolics in Cajanus cajan leaves by ultra performance liquid chromatography. Sep Purif Technol. 2015;149:237–44.

    Article  CAS  Google Scholar 

  32. Radošević K, Ćurko N, Gaurina Srček V, Cvjetko Bubalo M, Tomašević M, Kovačević Ganić K, et al. Natural deep eutectic solvents as beneficial extractants for enhancement of plant extracts bioactivity. LWT-Food Sci Technol. 2016;73:45–51.

    Article  CAS  Google Scholar 

  33. Bakirtzi C, Triantafyllidou K, Makris DP. Novel lactic acid-based natural deep eutectic solvents: efficiency in the ultrasound-assisted extraction of antioxidant polyphenols from common native Greek medicinal plants. J Appl Res Med Aromat Plants. 2016;3:120–7.

    Google Scholar 

  34. Bajkacz S, Adamek J. Evaluation of new natural deep eutectic solvents for the extraction of isoflavones from soy products. Talanta. 2017;168:329–35.

    Article  CAS  PubMed  Google Scholar 

  35. Tan T, Zhang M, Wan Y, Qiu H. Utilization of deep eutectic solvents as novel mobile phase additives for improving the separation of bioactive quaternary alkaloids. Talanta. 2016;149:85–90.

    Article  CAS  PubMed  Google Scholar 

  36. Li G, Zhu T, Lei Y. Choline chloride-based deep eutectic solvents as additives for optimizing chromatographic behavior of caffeic acid. Korean J Chem Eng. 2015;32:2103–8.

    Article  CAS  Google Scholar 

  37. Dai Y, Witkamp GJ, Verpoorte R, Choi YH. Tailoring properties of natural deep eutectic solvents with water to facilitate their applications. Food Chem. 2015;187:14–9.

    Article  CAS  PubMed  Google Scholar 

  38. De Faria CMQG, Nazaré AC, Petrônio MS, Paracatu LC, Zeraik ML, Regasini LO, et al. Protocatechuic acid alkyl esters: hydrophobicity as a determinant factor for inhibition of NADPH oxidase. Curr Med Chem. 2012;19:4885–93.

    Article  PubMed  Google Scholar 

  39. Snyder LR, Kirkland JJ, Dolan JW. Introduction to modern liquid chromatography. 3rd ed. Hoboken: John Wiley & Sons, Inc.; 2009.

  40. Neue UD. Theory of peak capacity in gradient elution. J Chromatogr A. 2005;1079:153–61.

    Article  CAS  PubMed  Google Scholar 

  41. Zhang Q, De Oliveira Vigier K, Royer S, Jérôme F. Deep eutectic solvents: syntheses, properties and applications. Chem Soc Rev. 2012;41:7108–46.

    Article  CAS  PubMed  Google Scholar 

  42. Prat D, Hayler J, Wells A. A survey of solvent selection guides. Green Chem. 2014;16:4546–51.

    Article  CAS  Google Scholar 

  43. Martín-Calero A, Pino V, Ayala JH, González V, Afonso AM. Ionic liquids as mobile phase additives in high-performance liquid chromatography with electrochemical detection: application to the determination of heterocyclic aromatic amines in meat-based infant foods. Talanta. 2009;79:590–7.

    Article  CAS  PubMed  Google Scholar 

  44. Tobiszewski M, Namieśnik J. Greener organic solvents in analytical chemistry. Curr Opin Green Sustain Chem. 2017;5:1–4.

    Article  Google Scholar 

  45. Tobiszewski M, Marć M, Gałuszka A, Namieśnik J. Green chemistry metrics with special reference to green analytical chemistry. Molecules. 2015;20:10928–46.

    Article  CAS  PubMed  Google Scholar 

  46. Koller G, Fischer U, Hungerbühler K. Assessing safety, health, and environmental impact early during process development. Ind Eng Chem Res. 2000;39:960–72.

    Article  CAS  Google Scholar 

  47. Koller G, Fischer U, Hungerbühler K. Assessment of environment-, health- and safety aspects of fine chemical processes during early design phases. Comput Chem Eng. 1999;23:S63–S6.

    Article  Google Scholar 

  48. Shaaban H, Górecki T. Current trends in green liquid chromatography for the analysis of pharmaceutically active compounds in the environmental water compartments. Talanta. 2015;132:739–52.

    Article  CAS  PubMed  Google Scholar 

  49. Desire CT, Hilder EF, Arrua RD. Monolithic high-performance liquid chromatography columns. In: Encyclopedia of Analytical Chemistry. Hoboken: John Wiley & Sons, Ltd.; 2017. p. 1–37. https://doi.org/10.1002/9780470027318.a9386.

  50. Li X, Row KH. Development of deep eutectic solvents applied in extraction and separation. J Sep Sci. 2016;39:3505–20.

    Article  CAS  PubMed  Google Scholar 

  51. García-Alvarez-Coque MC, Ruiz-Angel MJ, Berthod A, Carda-Broch S. On the use of ionic liquids as mobile phase additives in high-performance liquid chromatography. A review. Anal Chim Acta. 2015;883:1–21.

    Article  CAS  PubMed  Google Scholar 

  52. Ferreira VG, Leme GM, Cavalheiro AJ, Funari CS. Online extraction coupled to liquid chromatography analysis (OLE-LC): eliminating traditional sample preparation steps in the investigation of solid complex matrices. Anal Chem. 2016;88:8421–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

A.S. acknowledges the Australian Commonwealth government for an RTP scholarship. We thank Dr João Luiz Bronzel for assistance with chromatography experiments.

Funding

This work was supported by a FAPESP SPRINT 4th Edition 2015 grant and the Australian Research Council’s Discovery funding scheme (grant no. 16/50009-2 and DP130101471, respectively). V.S.B., A.J.C., C.S.F., and K.F. are supported by the São Paulo Research Foundation (grant no. 013/07600-3 and no. 13/15086-8).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Dario Arrua or Cristiano Soleo Funari.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 719 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sutton, A.T., Fraige, K., Leme, G.M. et al. Natural deep eutectic solvents as the major mobile phase components in high-performance liquid chromatography—searching for alternatives to organic solvents. Anal Bioanal Chem 410, 3705–3713 (2018). https://doi.org/10.1007/s00216-018-1027-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1027-5

Keywords

Navigation