Skip to main content
Log in

Intelligent testing strategy and analytical techniques for the safety assessment of nanomaterials

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Nanomaterials (NMs) are widely used in various areas because of their unique and useful physicochemical properties. However, they may pose toxicity risks to human health after exposure. Applicable and reliable approaches are needed for risk assessment of NMs. Herein, an intelligent analytical strategy for safety assessment of NMs is proposed that focuses on toxicity assessment using an in vitro cell model. The toxicity assessment by testing on the adverse outcome pathway in a cell culture system was defined by application of a tiered testing approach. To provide an overview of the applicable approach for risk assessment of NMs, we discuss the most commonly used techniques and analytical methods, including computational toxicology methods in dosimetry assessment, high-throughput screening for toxicity testing with high efficiency, and omics-based toxicology assessment methods. The final section focuses on the route map for an integrated approach to a testing and assessment strategy on how to extrapolate the in vitro NM toxicity testing data to in vivo risk assessment of NMs. The intelligent analytical strategy, having evolved step-by-step, could contribute to better applications for safety evaluation and risk assessment of NMs in reality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. Bhushan B, editor. Springer handbook of nanotechnology. 4th ed. Berlin: Springer; 2017.

  2. Du JF, Zhang X, Yan L, Chen R. Functional tumor imaging based on inorganic nanomaterials. Sci China Chem. 2017;60(11):1425–38.

    Article  CAS  Google Scholar 

  3. Chen R, Chen C. Environment, health and safety issues in nanotechnology. In: Bhushan B, editor. Springer handbook of nanotechnology. 4th ed. Berlin: Springer; 2017. p. 1503–24.

    Google Scholar 

  4. Chen R, Chen C. Exposure scenarios in the workplace and risk assessment of carbon nanomaterials. In: Chen C, Wang H, editors. Biomedical applications and toxicology of carbon nanomaterials. Weinheim: Wiley-VCH; 2016. p. 515–34.

    Chapter  Google Scholar 

  5. Wang J, Quershi WA, Li YY, Xu JX, Nie GJ. Analytical methods for nano-bio interface interactions. Sci China Chem. 2016;59(11):1467–78.

    Article  CAS  Google Scholar 

  6. Chen R, Chen CY. Nanotoxicity. In: Xie YB, editor. The nanobiotechnology handbook. Abingdon: Taylor & Francis; 2012. p. 599–620.

    Chapter  Google Scholar 

  7. Chen C, Li YF. Qu Y, Chai Z, Zhao Y. Advanced nuclear analytical and related techniques for the growing challenges in nanotoxicology. Chem Soc Rev. 2013;42(21):8266–303.

    Article  CAS  PubMed  Google Scholar 

  8. Wang B, Wang Z, Feng W, Wang M. Hu Z, Chai Z, et al. New methods for nanotoxicology: synchrotron radiation-based techniques. Anal Bioanal Chem. 2010;398(2):667–76.

    Article  CAS  PubMed  Google Scholar 

  9. Li YF, Zhao J, Qu Y, Gao Y, Guo Z, Liu Z, et al. Synchrotron radiation techniques for nanotoxicology. Nanomedicine. 2015;11(6):1531–49.

    Article  CAS  PubMed  Google Scholar 

  10. OECD. Test no. 413: subchronic inhalation toxicity: 90-day study. Paris: OECD Publishing; 2009.

    Google Scholar 

  11. OECD. Test no. 412: subacute inhalation toxicity: 28-day study. Paris: OECD Publishing; 2009.

    Google Scholar 

  12. OECD. Test no. 403: acute inhalation toxicity. Paris: OECD Publishing; 2009.

    Google Scholar 

  13. Nel A, Xia T, Meng H, Wang X, Lin S, Ji Z, et al. Nanomaterial toxicity testing in the 21st century: use of a predictive toxicological approach and high-throughput screening. Acc Chem Res. 2013;46(3):607–21.

    Article  CAS  PubMed  Google Scholar 

  14. Farcal L, Torres Andon F, Di Cristo L, Rotoli BM, Bussolati O, Bergamaschi E, et al. Comprehensive in vitro toxicity testing of a panel of representative oxide nanomaterials: first steps towards an intelligent testing strategy. PLoS One. 2015;10(5):e0127174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Firestone M, Kavlock R, Zenick H, Kramer M. The U.S. Environmental Protection Agency strategic plan for evaluating the toxicity of chemicals. J Toxicol Environ Health B Crit Rev. 2010;13(2-4):139–62.

    Article  CAS  PubMed  Google Scholar 

  16. Krewski D, Acosta D Jr, Andersen M, Anderson H, Bailar JC 3rd, Boekelheide K, et al. Toxicity testing in the 21st century: a vision and a strategy. J Toxicol Environ Health B Crit Rev. 2010;13(2-4):51–138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen G, Shen Y, Li X, Jiang Q, Cheng S. Gu Y, et al. The endoplasmic reticulum stress inducer thapsigargin enhances the toxicity of ZnO nanoparticles to macrophages and macrophage-endothelial co-culture. Environ Toxicol Pharmacol. 2017;50:103–10.

    Article  CAS  PubMed  Google Scholar 

  18. Chen R, Huo L, Shi X, Bai R, Zhang Z, Zhao Y, et al. Endoplasmic reticulum stress induced by zinc oxide nanoparticles is an earlier biomarker for nanotoxicological evaluation. ACS Nano. 2014;8(3):2562–74.

    Article  CAS  PubMed  Google Scholar 

  19. Huang CC, Aronstam RS, Chen DR, Huang YW. Oxidative stress, calcium homeostasis, and altered gene expression in human lung epithelial cells exposed to ZnO nanoparticles. Toxicol In Vitro. 2010;24(1):45–55.

    Article  CAS  PubMed  Google Scholar 

  20. Zhao J. Xu L, Zhang T, Ren G, Yang Z. Influences of nanoparticle zinc oxide on acutely isolated rat hippocampal CA3 pyramidal neurons. Neurotoxicology. 2009;30(2):220–30.

    Article  CAS  PubMed  Google Scholar 

  21. Meshik X, Choi M, Baker A, Malchow RP, Covnot L, Doan S, et al. Modulation of voltage-gated conductances of retinal horizontal cells by UV-excited TiO2 nanoparticles. Nanomedicine. 2017;13(3):1031–40.

    Article  CAS  PubMed  Google Scholar 

  22. Huo L, Chen R, Zhao L, Shi X, Bai R, Long D, et al. Silver nanoparticles activate endoplasmic reticulum stress signaling pathway in cell and mouse models: The role in toxicity evaluation. Biomaterials. 2015;61:307–15.

    Article  CAS  PubMed  Google Scholar 

  23. Pan Y, Neuss S, Leifert A, Fischler M, Wen F, Simon U, et al. Size-dependent cytotoxicity of gold nanoparticles. Small. 2007;3(11):1941–9.

    Article  CAS  PubMed  Google Scholar 

  24. Uboldi C, Bonacchi D, Lorenzi G, Hermanns MI, Pohl C, Baldi G, et al. Gold nanoparticles induce cytotoxicity in the alveolar type-II cell lines A549 and NCIH441. Part Fibre Toxicol. 2009;6:18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Piret JP, Bondarenko OM, Boyles MSP, Himly M, Ribeiro AR, Benetti F, et al. Pan-European inter-laboratory studies on a panel of in vitro cytotoxicity and pro-inflammation assays for nanoparticles. Arch Toxicol. 2017;91(6):2315–30.

    Article  CAS  PubMed  Google Scholar 

  26. Vetten MA, Tlotleng N, Tanner Rascher D, Skepu A, Keter FK, Boodhia K, et al. Label-free in vitro toxicity and uptake assessment of citrate stabilised gold nanoparticles in three cell lines. Part Fibre Toxicol. 2013;10:50.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Austin LA, Ahmad S, Kang B, Rommel KR, Mahmoud M, Peek ME, et al. Cytotoxic effects of cytoplasmic-targeted and nuclear-targeted gold and silver nanoparticles in HSC-3 cells—a mechanistic study. Toxicol In Vitro. 2015;29(4):694–705.

    Article  CAS  PubMed  Google Scholar 

  28. Wang X, Duch MC, Mansukhani N, Ji ZX, Liao YP, Wang MY, et al. Use of a pro-fibrogenic mechanism-based predictive toxicological approach for tiered testing and decision analysis of carbonaceous nanomaterials. ACS Nano. 2015;9(3):3032–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li R, Ji Z, Chang CH, Dunphy DR, Cai X, Meng H, et al. Surface interactions with compartmentalized cellular phosphates explain rare earth oxide nanoparticle hazard and provide opportunities for safer design. ACS Nano. 2014;8(2):1771–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Guo C, Wang J, Yang M, Li Y, Cui S, Zhou X, et al. Amorphous silica nanoparticles induce malignant transformation and tumorigenesis of human lung epithelial cells via P53 signaling. Nanotoxicology. 2017;11(9-10):1176–94.

    Article  CAS  PubMed  Google Scholar 

  31. Li Y, Liu Y. Fu Y, Wei T, Le Guyader L, Gao G, et al. The triggering of apoptosis in macrophages by pristine graphene through the MAPK and TGF-beta signaling pathways. Biomaterials. 2012;33(2):402–11.

    Article  CAS  PubMed  Google Scholar 

  32. Hackenberg S, Friehs G, Kessler M, Froelich K, Ginzkey C, Koehler C, et al. Nanosized titanium dioxide particles do not induce DNA damage in human peripheral blood lymphocytes. Environ Mol Mutagen. 2011;52(4):264–8.

    Article  CAS  PubMed  Google Scholar 

  33. Hackenberg S, Friehs G, Froelich K, Ginzkey C, Koehler C, Scherzed A, et al. Intracellular distribution, geno- and cytotoxic effects of nanosized titanium dioxide particles in the anatase crystal phase on human nasal mucosa cells. Toxicol Lett. 2010;195(1):9–14.

    Article  CAS  PubMed  Google Scholar 

  34. Hackenberg S, Scherzed A, Kessler M, Hummel S, Technau A, Froelich K, et al. Silver nanoparticles: evaluation of DNA damage, toxicity and functional impairment in human mesenchymal stem cells. Toxicol Lett. 2011;201(1):27–33.

    Article  CAS  PubMed  Google Scholar 

  35. Hackenberg S, Scherzed A, Technau A, Kessler M, Froelich K, Ginzkey C, et al. Cytotoxic, genotoxic and pro-inflammatory effects of zinc oxide nanoparticles in human nasal mucosa cells in vitro. Toxicol In Vitro. 2011;25(3):657–63.

    Article  CAS  PubMed  Google Scholar 

  36. Hackenberg S, Zimmermann FZ, Scherzed A, Friehs G, Froelich K, Ginzkey C, et al. Repetitive exposure to zinc oxide nanoparticles induces DNA damage in human nasal mucosa mini organ cultures. Environ Mol Mutagen. 2011;52(7):582–9.

    Article  CAS  PubMed  Google Scholar 

  37. Jiang X, Foldbjerg R, Miclaus T, Wang L, Singh R, Hayashi Y, et al. Multi-platform genotoxicity analysis of silver nanoparticles in the model cell line CHO-K1. Toxicol Lett. 2013;222(1):55–63.

    Article  CAS  PubMed  Google Scholar 

  38. George JM, Magogotya M, Vetten MA, Buys AV, Gulumian M. From the cover: an investigation of the genotoxicity and interference of gold nanoparticles in commonly used in vitro mutagenicity and genotoxicity assays. Toxicol Sci. 2017;156(1):149–66.

    CAS  PubMed  Google Scholar 

  39. Huk A, Izak-Nau E, El Yamani N, Uggerud H, Vadset M, Zasonska B, et al. Impact of nanosilver on various DNA lesions and HPRT gene mutations - effects of charge and surface coating. Part Fibre Toxicol. 2015;12:25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang P, Wang Y, Nie X, Braïni C, Bai R, Chen C. Multiwall carbon nanotubes directly promote fibroblast–myofibroblast and epithelial–mesenchymal transitions through the activation of the TGF-β/Smad signaling pathway. Small. 2015;11(4):446–55.

    Article  CAS  PubMed  Google Scholar 

  41. Wang P, Nie X, Wang Y, Li Y, Ge C, Zhang L, et al. Multiwall carbon nanotubes mediate macrophage activation and promote pulmonary fibrosis through TGF-β/Smad signaling pathway. Small. 2013;9(22):3799–811.

    Article  CAS  PubMed  Google Scholar 

  42. Leist M, Ghallab A, Graepel R, Marchan R, Hassan R, Bennekou SH, et al. Adverse outcome pathways: opportunities, limitations and open questions. Arch Toxicol. 2017;91(11):3477–505.

    Article  CAS  PubMed  Google Scholar 

  43. Nalwa HS, Zhao YL. Nanotoxicology. Valencia: American Scientific Publishers; 2007.

    Google Scholar 

  44. Zhang L, Bai R, Liu Y, Meng L, Li B, Wang L, et al. The dose-dependent toxicological effects and potential perturbation on the neurotransmitter secretion in brain following intranasal instillation of copper nanoparticles. Nanotoxicology. 2012;6(5):562–75.

    Article  CAS  PubMed  Google Scholar 

  45. Yin H, Chen R, Casey PS, Ke PC, Davis TP, Chen C. Reducing the cytotoxicity of ZnO nanoparticles by a pre-formed protein corona in a supplemented cell culture medium. RSC Adv. 2015;5(90):73963–73.

    Article  CAS  Google Scholar 

  46. Chen R, Zhao L, Bai R, Liu Y, Han L. Xu Z, et al. Silver nanoparticles induced oxidative and endoplasmic reticulum stresses in mouse tissues: implications for the development of acute toxicity after intravenous administration. Toxicology Research. 2016;5(2):602–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang J, Liu Y, Jiao F, Lao F, Li W. Gu Y, et al. Time-dependent translocation and potential impairment on central nervous system by intranasally instilled TiO2 nanoparticles. Toxicology. 2008;254(1-2):82–90.

    Article  CAS  PubMed  Google Scholar 

  48. Fahmy B, Cormier SA. Copper oxide nanoparticles induce oxidative stress and cytotoxicity in airway epithelial cells. Toxicol In Vitro. 2009;23(7):1365–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gabriel C, Camins A, Sureda FX, Aquirre L, Escubedo E, Pallas M, et al. Determination of nitric oxide generation in mammalian neurons using dichlorofluorescin diacetate and flow cytometry. J Pharmacol Toxicol Methods. 1997;38(2):93–8.

    Article  CAS  PubMed  Google Scholar 

  50. Dubey A, Goswami M, Yadav K, Chaudhary D. Oxidative stress and nano-toxicity induced by TiO2 and ZnO on Wag cell line. PLoS One. 2015;10(5):e0127493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Das B, Dadhich P, Pal P, Srivas PK, Bankoti K, Dhara S. Carbon nanodots from date molasses: new nanolights for the in vitro scavenging of reactive oxygen species. J Mater Chem B. 2014;2(39):6839–47.

    Article  CAS  Google Scholar 

  52. Aitken RJ. Nitroblue tetrazolium (NBT) assay. Reprod Biomed Online. 2018;36(1):90–1.

    Article  PubMed  Google Scholar 

  53. Chen R, Shi XF, Bai R, Rang WQ, Huo LL, Zhao L, et al. Airborne nanoparticle pollution in a wire electrical discharge machining workshop and potential health risks. Aerosol Air Qual Res. 2015;15(1):284–94.

    Article  CAS  Google Scholar 

  54. Kang KW, Lee SJ, Kim SG. Molecular mechanism of NRF2 activation by oxidative stress. Antioxid Redox Signal. 2005;7(11-12):1664–73.

    Article  CAS  PubMed  Google Scholar 

  55. Yin H, Casey PS. Effects of iron or manganese doping of ZnO nanoparticles on their dissolution, ROS generation and cytotoxicity. RSC Adv. 2014;4(50):26149–57.

    Article  CAS  Google Scholar 

  56. Prasad RY, McGee JK, Killius MG, Suarez DA, Blackman CF, DeMarini DM, et al. Investigating oxidative stress and inflammatory responses elicited by silver nanoparticles using high-throughput reporter genes in HepG2 cells: effect of size, surface coating, and intracellular uptake. Toxicol In Vitro. 2013;27(6):2013–21.

    Article  CAS  PubMed  Google Scholar 

  57. Le TC, Yin H, Chen R, Chen Y, Zhao L, Casey PS, et al. An experimental and computational approach to the development of ZnO nanoparticles that are safe by design. Small. 2016;12(26):3568–77.

    Article  CAS  PubMed  Google Scholar 

  58. Morry J, Ngamcherdtrakul W, Yantasee W. Oxidative stress in cancer and fibrosis: Opportunity for therapeutic intervention with antioxidant compounds, enzymes, and nanoparticles. Redox Biol. 2017;11:240–53.

    Article  CAS  PubMed  Google Scholar 

  59. Ahamed M, Akhtar MJ, Khan MAM, Alhadlaq HA, Aldalbahi A. Nanocubes of indium oxide induce cytotoxicity and apoptosis through oxidative stress in human lung epithelial cells. Colloids Surf B. 2017;156:157–64.

    Article  CAS  Google Scholar 

  60. Nguyen KC, Willmore WG, Tayabali AF. Cadmium telluride quantum dots cause oxidative stress leading to extrinsic and intrinsic apoptosis in hepatocellular carcinoma HepG2 cells. Toxicology. 2013;306(2):114–23.

    Article  CAS  PubMed  Google Scholar 

  61. Liu Q, Baumgartner J, Zhang Y, Liu Y, Sun Y, Zhang M. Oxidative potential and inflammatory impacts of source apportioned ambient air pollution in Beijing. Environ Sci Technol. 2014;48(21):12920–9.

    Article  CAS  PubMed  Google Scholar 

  62. Magnani ND, Muresan XM, Belmonte G, Cervellati F, Sticozzi C, Pecorelli A, et al. Skin damage mechanisms related to airborne particulate matter exposure. Toxicol Sci. 2016;149(1):227–36.

    Article  CAS  PubMed  Google Scholar 

  63. Ovrevik J, Refsnes M, Lag M, Holme JA, Schwarze PE. Activation of proinflammatory responses in cells of the airway mucosa by particulate matter: oxidant- and non-oxidant-mediated triggering mechanisms. Biomolecules. 2015;5(3):1399–440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chen R, Ling D, Zhao L, Wang S, Liu Y, Bai R, et al. Parallel comparative studies on mouse toxicity of oxide nanoparticle- and gadolinium-based T1 MRI contrast agents. ACS Nano. 2015;9(12):12425–35.

    Article  CAS  PubMed  Google Scholar 

  65. Foldbjerg R, Olesen P, Hougaard M, Dang DA, Hoffmann HJ, Autrup H. PVP-coated silver nanoparticles and silver ions induce reactive oxygen species, apoptosis and necrosis in THP-1 monocytes. Toxicol Lett. 2009;190(2):156–62.

    Article  CAS  PubMed  Google Scholar 

  66. Lin JH, Walter P, Yen TS. Endoplasmic reticulum stress in disease pathogenesis. Annu Rev Pathol. 2008;3:399–425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yuan H, Zhang Q, Guo J, Zhang T, Zhao J, Li J, et al. A PGC-1α-mediated transcriptional network maintains mitochondrial redox and bioenergetic homeostasis against doxorubicin-induced toxicity in human cardiomyocytes: implementation of TT21C. Toxicol Sci. 2016;150(2):400–17.

    Article  CAS  PubMed  Google Scholar 

  68. Rizzuto R, Pozzan T. Microdomains of intracellular Ca2+: molecular determinants and functional consequences. Physiol Rev. 2006;86(1):369–408.

    Article  CAS  PubMed  Google Scholar 

  69. Cole SP. Rapid chemosensitivity testing of human lung tumor cells using the MTT assay. Cancer Chemother Pharmacol. 1986;17(3):259–63.

    Article  CAS  PubMed  Google Scholar 

  70. Guo C, Wang J, Jing L, Ma R, Liu X, Gao L, et al. Mitochondrial dysfunction, perturbations of mitochondrial dynamics and biogenesis involved in endothelial injury induced by silica nanoparticles. Environ Pollut. 2018;236(2018):926–36.

  71. Huo L, Chen R, Shi X, Bai R, Wang P, Chang Y, et al. High-content screening for assessing nanomaterial toxicity. J Nanosci Nanotechnol. 2015;15(2):1143–9.

    Article  CAS  PubMed  Google Scholar 

  72. Berridge MJ. Unlocking the secrets of cell signaling. Annu Rev Physiol. 2005;67(1):1–21.

    Article  CAS  PubMed  Google Scholar 

  73. Wang D, Guo D, Bi H. Wu Q, Tian Q, Du Y. Zinc oxide nanoparticles inhibit Ca2+-ATPase expression in human lens epithelial cells under UVB irradiation. Toxicol In Vitro. 2013;27(8):2117–26.

    Article  CAS  PubMed  Google Scholar 

  74. Guo D, Bi H, Wang D, Wu Q. Zinc oxide nanoparticles decrease the expression and activity of plasma membrane calcium ATPase, disrupt the intracellular calcium homeostasis in rat retinal ganglion cells. Int J Biochem Cell Biol. 2013;45(8):1849–59.

    Article  CAS  PubMed  Google Scholar 

  75. Zieminska E, Stafiej A, Struzynska L. The role of the glutamatergic NMDA receptor in nanosilver-evoked neurotoxicity in primary cultures of cerebellar granule cells. Toxicology. 2014;315:38–48.

    Article  CAS  PubMed  Google Scholar 

  76. Haase A, Rott S, Mantion A, Graf P, Plendl J, Thunemann AF, et al. Effects of silver nanoparticles on primary mixed neural cell cultures: uptake, oxidative stress and acute calcium responses. Toxicol Sci. 2012;126(2):457–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yin N, Liu Q, Liu J, He B, Lin C, Li Z, et al. Silver nanoparticle exposure attenuates the viability of rat cerebellum granule cells through apoptosis coupled to oxidative stress. Small. 2013;9(9-10):1831–41.

    Article  CAS  PubMed  Google Scholar 

  78. Chen EY, Garnica M, Wang YC, Mintz AJ, Chen CS, Chin WCA. mixture of anatase and rutile TiO2 nanoparticles induces histamine secretion in mast cells. Part Fibre Toxicol. 2012;9:2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Liu Y, Zhao Y, Sun B, Chen C. Understanding the toxicity of carbon nanotubes. Acc Chem Res. 2013;46(3):702–13.

    Article  CAS  PubMed  Google Scholar 

  80. Rasheed PA, Lee JS. Ultrasensitive colorimetric detection of NF-κB protein at picomolar levels using target-induced passivation of nanoparticles. Anal Bioanal Chem. 2018;410(4):1397–403.

  81. Ge C, Meng L, Xu L, Bai R, Du J, Zhang L, et al. Acute pulmonary and moderate cardiovascular responses of spontaneously hypertensive rats after exposure to single-wall carbon nanotubes. Nanotoxicology. 2012;6(5):526–42.

    Article  CAS  PubMed  Google Scholar 

  82. Luo M, Chen P, Wang JJ, Deng XY, Dong L, Wu MH, et al. The cytotoxicity of oxidized multi-walled carbon nanotubes on macrophages. Sci China Chem. 2016;59(7):918–26.

    Article  CAS  Google Scholar 

  83. Gordon CJ, Schladweiler MC, Krantz T, King C, Cardiovascular KUP. thermoregulatory responses of unrestrained rats exposed to filtered or unfiltered diesel exhaust. Inhal Toxicol. 2012;24(5):296–309.

    Article  CAS  PubMed  Google Scholar 

  84. Chen R, Zhang L, Ge C, Tseng MT, Bai R. Qu Y, et al. Subchronic toxicity and cardiovascular responses in spontaneously hypertensive rats after exposure to multiwalled carbon nanotubes by intratracheal instillation. Chem Res Toxicol. 2015;28(3):440–50.

    Article  CAS  PubMed  Google Scholar 

  85. Wang X, Xia T, Ntim SA, Ji Z, Lin S, Meng H, et al. Dispersal state of multiwalled carbon nanotubes elicits profibrogenic cellular responses that correlate with fibrogenesis biomarkers and fibrosis in the murine lung. ACS Nano. 2011;5(12):9772–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sun B, Wang X, Ji Z, Li R, Xia T. NLRP3 inflammasome activation induced by engineered nanomaterials. Small. 2013;9(9-10):1595–607.

    Article  CAS  PubMed  Google Scholar 

  87. Hamilton RF, Wu N, Porter D, Buford M, Wolfarth M, Holian A. Particle length-dependent titanium dioxide nanomaterials toxicity and bioactivity. Part Fibre Toxicol. 2009;6(1):35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Chen ZY, Liu Y, Sun BY, Li H, Dong JQ, Zhang LJ, et al. Polyhydroxylated metallofullerenols stimulate IL-1β secretion of macrophage through TLRs/MyD88/NF-κB pathway and NLRP3 inflammasome activation. Small. 2014;10(12):2362–72.

    Article  CAS  PubMed  Google Scholar 

  89. Liang X, Zhang D, Liu W, Yan Y, Zhou F, Wu W, et al. Reactive oxygen species trigger NF-κB-mediated NLRP3 inflammasome activation induced by zinc oxide nanoparticles in A549 cells. Toxicol Ind Health. 2017;33(10):737–45.

    Article  CAS  PubMed  Google Scholar 

  90. Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol Cell. 2002;10(2):417–26.

    Article  CAS  PubMed  Google Scholar 

  91. Wang L, Luanpitpong S, Castranova V, Tse W. Lu Y, Pongrakhananon V, et al. Carbon nanotubes induce malignant transformation and tumorigenesis of human lung epithelial cells. Nano Lett. 2011;11(7):2796–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Luanpitpong S, Wang L, Stueckle TA, Tse W, Chen YC, Rojanasakul Y. Caveolin-1 regulates lung cancer stem-like cell induction and p53 inactivation in carbon nanotube-driven tumorigenesis. Oncotarget. 2014;5(11):3541–54.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Zhang W, Liu HTMAPK. signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res. 2002;12(1):9–18.

    Article  CAS  PubMed  Google Scholar 

  94. Chen J, Zhang J, Cao J, Xia Z, Gan J, Inflammatory MAPK. and NF-κB signaling pathways differentiated hepatitis potential of two agglomerated titanium dioxide particles. J Hazard Mater. 2016;304:370–8.

    Article  CAS  PubMed  Google Scholar 

  95. Nie X, Tang J, Liu Y, Cai R, Miao Q, Zhao Y, et al. Fullerenol inhibits the cross-talk between bone marrow-derived mesenchymal stem cells and tumor cells by regulating MAPK signaling. Nanomedicine. 2017;13(6):1879–90.

    Article  CAS  PubMed  Google Scholar 

  96. Snyder-Talkington BN, Schwegler-Berry D, Castranova V, Qian Y, Guo NL. Multi-walled carbon nanotubes induce human microvascular endothelial cellular effects in an alveolar-capillary co-culture with small airway epithelial cells. Part Fibre Toxicol. 2013;10:35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Simon-Vazquez R, Lozano-Fernandez T, Davila-Grana A, Gonzalez-Fernandez A. Metal oxide nanoparticles interact with immune cells and activate different cellular responses. Int J Nanomed. 2016;11:4657–68.

    Article  CAS  Google Scholar 

  98. Kim JH, Jeong MS, Kim DY. Her S, Wie MB. Zinc oxide nanoparticles induce lipoxygenase-mediated apoptosis and necrosis in human neuroblastoma SH-SY5Y cells. Neurochem Int. 2015;90:204–14.

    Article  CAS  PubMed  Google Scholar 

  99. Vidovic S, Elder J, Medihala P, Lawrence JR, Predicala B, Zhang H, et al. ZnO nanoparticles impose a panmetabolic toxic effect along with strong necrosis, inducing activation of the envelope stress response in Salmonella enterica serovar Enteritidis. Antimicrob Agents Chemother. 2015;59(6):3317–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Rong LI, Wang XW, Yang XH, Gao S. Cell terminal fate—cell death. Chin Sci Bull. 2016;61(18):1983.

    Google Scholar 

  101. Jiang X, Wang L, Ji Y, Tang J, Tian X, Cao M, et al. Interference of steroidogenesis by gold nanorod core/silver shell nanostructures: implications for reproductive toxicity of silver nanomaterials. Small. 2017;13(10):1602855.

    Article  CAS  Google Scholar 

  102. Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WA, Seaton A, et al. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol. 2008;3(7):423–8.

    Article  CAS  PubMed  Google Scholar 

  103. Magdolenova Z, Collins A, Kumar A, Dhawan A, Stone V, Dusinska M. Mechanisms of genotoxicity. A review of in vitro and in vivo studies with engineered nanoparticles. Nanotoxicology. 2014;8(3):233–78.

    Article  CAS  PubMed  Google Scholar 

  104. Foldbjerg R, Dang DA, Autrup H. Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. Arch Toxicol. 2011;85(7):743–50.

    Article  CAS  PubMed  Google Scholar 

  105. Hudecova A, Kusznierewicz B, Hasplova K, Huk A, Magdolenova Z, Miadokova E, et al. Gentiana asclepiadea exerts antioxidant activity and enhances DNA repair of hydrogen peroxide- and silver nanoparticles-induced DNA damage. Food Chem Toxicol. 2012;50(9):3352–9.

    Article  CAS  PubMed  Google Scholar 

  106. Hudecova A, Kusznierewicz B, Runden-Pran E, Magdolenova Z, Hasplova K, Rinna A, et al. Silver nanoparticles induce premutagenic DNA oxidation that can be prevented by phytochemicals from Gentiana asclepiadea. Mutagenesis. 2012;27(6):759–69.

    Article  CAS  PubMed  Google Scholar 

  107. Sanderson BJ, Johnson KJ, Henner WD. Dose-dependent cytotoxic and mutagenic effects of antineoplastic alkylating agents on human lymphoblastoid cells. Environ Mol Mutagen. 1991;17(4):238–43.

    Article  CAS  PubMed  Google Scholar 

  108. Wang JJ, Sanderson BJ, Wang H. Cyto- and genotoxicity of ultrafine TiO2 particles in cultured human lymphoblastoid cells. Mutat Res. 2007;628(2):99–106.

    Article  CAS  PubMed  Google Scholar 

  109. Chen Z, Wang Y, Ba T, Li Y, Pu J, Chen T, et al. Genotoxic evaluation of titanium dioxide nanoparticles in vivo and in vitro. Toxicol Lett. 2014;226(3):314–9.

    Article  CAS  PubMed  Google Scholar 

  110. Wang JJ, Wang H, Sanderson BJS. Ultrafine quartz-induced damage in human lymphoblastoid cells in vitro using three genetic damage end-points. Toxicol Mech Methods. 2007;17(4):223–32.

    Article  CAS  PubMed  Google Scholar 

  111. Hinderliter PM, Minard KR, Orr G, Chrisler WB, Thrall BD, Pounds JG, et al. ISDD: a computational model of particle sedimentation, diffusion and target cell dosimetry for in vitro toxicity studies. Part Fibre Toxicol. 2010;7(1):36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Jiang X, Miclaus T, Wang L, Foldbjerg R, Sutherland DS, Autrup H, et al. Fast intracellular dissolution and persistent cellular uptake of silver nanoparticles in CHO-K1 cells: implication for cytotoxicity. Nanotoxicology. 2015;9(2):181–9.

    Article  CAS  PubMed  Google Scholar 

  113. Wang L, Jiang X, Ji Y, Bai R, Zhao Y. Wu X, et al. Surface chemistry of gold nanorods: origin of cell membrane damage and cytotoxicity. Nanoscale. 2013;5(18):8384–91.

    Article  CAS  PubMed  Google Scholar 

  114. DeLoid G, Cohen JM, Darrah T, Derk R, Rojanasakul L, Pyrgiotakis G, et al. Estimating the effective density of engineered nanomaterials for in vitro dosimetry. Nat Commun. 2014;5(3):3514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. DeLoid GM, Cohen JM, Pyrgiotakis G, Preparation DP. characterization, and in vitro dosimetry of dispersed, engineered nanomaterials. Nat Protoc. 2017;12(2):355–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Jing X, Park JH, Peters TM, Thorne PS. Toxicity of copper oxide nanoparticles in lung epithelial cells exposed at the air-liquid interface compared with in vivo assessment. Toxicol In Vitro. 2015;29(3):502–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Jonathan G, Ananth T, Jones GDD, Paul H. DNA damage of macrophages induced by metal nanoparticulates using an air-liquid interface exposure model. Nanotoxicology. 2013;7(5):961–2.

    Article  CAS  Google Scholar 

  118. Lenz AG, Karg E, Lentner B, Dittrich V, Brandenberger C, Rothen-Rutishauser B, et al. A dose-controlled system for air-liquid interface cell exposure and application to zinc oxide nanoparticles. Part Fibre Toxicol. 2009;6(1):32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Rach J, Budde J, Mohle N, Aufderheide M. Direct exposure at the air-liquid interface: evaluation of an in vitro approach for simulating inhalation of airborne substances. J Appl Toxicol. 2014;34(5):506–15.

    Article  CAS  PubMed  Google Scholar 

  120. Shi X, Chen R, Huo L, Zhao L, Bai R, Long D, et al. Evaluation of nanoparticles emitted from printers in a clean chamber, a copy center and office rooms: health risks of indoor air quality. J Nanosci Nanotechnol. 2015;15(12):9554–64.

    Article  CAS  PubMed  Google Scholar 

  121. Chen R, Hu B, Liu Y, Xu J, Yang G, Xu D, et al. Beyond PM2.5: the role of ultrafine particles on adverse health effects of air pollution. Biochim Biophys Acta. 2016;1860(12):2844–55.

    Article  CAS  PubMed  Google Scholar 

  122. Nel A, Xia T, Madler L, Li N. Toxic potential of materials at the nanolevel. Science. 2006;311(5761):622–7.

    Article  CAS  PubMed  Google Scholar 

  123. Service RF. Nanotechnology. Can high-speed tests sort out which nanomaterials are safe? Science. 2008;321(5892):1036–7.

    Article  Google Scholar 

  124. Pereira DA, Williams JA. Origin and evolution of high throughput screening. Br J Pharmacol. 2007;152(1):53–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Zanella F, Lorens JB, Link W. High content screening: seeing is believing. Trends Biotechnol. 2010;28(5):237–45.

    Article  CAS  PubMed  Google Scholar 

  126. Donato MT, Tolosa L, Jimenez N, Castell JV, Gomez-Lechon MJ. High-content imaging technology for the evaluation of drug-induced steatosis using a multiparametric cell-based assay. J Biomol Screen. 2012;17(3):394–400.

    Article  CAS  PubMed  Google Scholar 

  127. Amorim MJB, Roca CP, Scott-Fordsmand JJ. Effect assessment of engineered nanoparticles in solid media - current insight and the way forward. Environ Pollut. 2016;218:1370–5.

    Article  CAS  PubMed  Google Scholar 

  128. Revel M, Chatel A, Mouneyrac C. Omics tools: new challenges in aquatic nanotoxicology? Aquat Toxicol. 2017;193:72–85.

    Article  CAS  PubMed  Google Scholar 

  129. Matysiak M, Kapka-Skrzypczak L, Brzoska K, Gutleb AC, Kruszewski M. Proteomic approach to nanotoxicity. J Proteomics. 2016;137:35–44.

    Article  CAS  PubMed  Google Scholar 

  130. Hartung T. Making big sense from big data in toxicology by read-across. ALTEX. 2016;33(2):83–93.

    Article  PubMed  Google Scholar 

  131. Ouedraogo M, Baudoux T, Stevigny C, Nortier J, Colet JM, Efferth T, et al. Review of current and "omics" methods for assessing the toxicity (genotoxicity, teratogenicity and nephrotoxicity) of herbal medicines and mushrooms. J Ethnopharmacol. 2012;140(3):492–512.

    Article  CAS  PubMed  Google Scholar 

  132. Kavlock RJ, Ankley GT, Blancato JN, Collette TW, Francis EZ, Gray Jr. LE, Hammerstrom K, Swartout J, Tilson HA, Toth GP, Veith GD, Weber EJ, Wolf DC, Young DM. A framework for a computational toxicology research program in ORD. U.S. Environmental Protection Agency, Washington, DC, EPA 600/R-03/065 (NTIS PB2005-105438), 2003.

  133. Crawford SE, Hartung T, Hollert H, Mathes B, van Ravenzwaay B, Steger-Hartmann T, et al. Green toxicology: a strategy for sustainable chemical and material development. Environ Sci Eur. 2017;29(1):16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Oki NO, Edwards SW. An integrative data mining approach to identifying adverse outcome pathway signatures. Toxicology. 2016;350-352:49–61.

    Article  CAS  PubMed  Google Scholar 

  135. Ren CX, Xiangang HU, Zhou QX. Review on attenuation of nanotoxicity and the mechanisms. Chin Sci Bull. 2016;61(7):707–17.

    Google Scholar 

  136. Tian L, Shang Y, Chen R, Bai R, Chen C, Inthavong K, et al. A combined experimental and numerical study on upper airway dosimetry of inhaled nanoparticles from an electrical discharge machine shop. Part Fibre Toxicol. 2017;14(1):24.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Bachler G, von Goetz N, Hungerbuhler K. Using physiologically based pharmacokinetic (PBPK) modeling for dietary risk assessment of titanium dioxide (TiO2) nanoparticles. Nanotoxicology. 2015;9(3):373–80.

    Article  CAS  PubMed  Google Scholar 

  138. Li M, Panagi Z, Avgoustakis K, Reineke J. Physiologically based pharmacokinetic modeling of PLGA nanoparticles with varied mPEG content. Int J Nanomed. 2012;7:1345–56.

    Article  CAS  Google Scholar 

  139. Bachler G, von Goetz N, Hungerbuhler K. A physiologically based pharmacokinetic model for ionic silver and silver nanoparticles. Int J Nanomed. 2013;8:3365–82.

    Google Scholar 

  140. Stearns R, Murthy G, Skornik W, Hatch V, Katler M, Godleski J. Detection of ultrafine copper oxide particles in the lungs of hamsters by electron spectroscopic imaging. In: Jouffrey B, Colliex C, editors. Proceedings of ICEM 13-PARIS. Paris: Les Editions de Physique; 1994. p.763–4.

  141. Oberdorster G, Oberdorster E, Nanotoxicology OJ. an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 2005;113(7):823–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Semmler M, Seitz J, Erbe F, Mayer P, Heyder J, Oberdorster G, et al. Long-term clearance kinetics of inhaled ultrafine insoluble iridium particles from the rat lung, including transient translocation into secondary organs. Inhal Toxicol. 2004;16(6-7):453–9.

    Article  CAS  PubMed  Google Scholar 

  143. Kreyling WG, Semmler M, Erbe F, Mayer P, Takenaka S, Schulz H, et al. Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. J Toxicol Environ Health A. 2002;65(20):1513–30.

    Article  CAS  PubMed  Google Scholar 

  144. Cassee FR, Muijser H, Duistermaat E, Freijer JJ, Geerse KB, Marijnissen JC, et al. Particle size-dependent total mass deposition in lungs determines inhalation toxicity of cadmium chloride aerosols in rats. Application of a multiple path dosimetry model. Arch Toxicol. 2002;76(5-6):277–86.

    Article  CAS  PubMed  Google Scholar 

  145. Anjilvel S, Asgharian BA. multiple-path model of particle deposition in the rat lung. Fundam Appl Toxicol. 1995;28(1):41–50.

    Article  CAS  PubMed  Google Scholar 

  146. Riebeling C, Luch A, Gotz ME. Comparative modeling of exposure to airborne nanoparticles released by consumer spray products. Nanotoxicology. 2016;10(3):343–51.

    Article  CAS  PubMed  Google Scholar 

  147. Othman M, Latif MT, Mohamed AF. Health impact assessment from building life cycles and trace metals in coarse particulate matter in urban office environments. Ecotoxicol Environ Saf. 2017;148:293–302.

    Article  CAS  PubMed  Google Scholar 

  148. Manigrasso M, Buonanno G, Stabile L, Morawska L, Avino P. Particle doses in the pulmonary lobes of electronic and conventional cigarette users. Environ Pollut. 2015;202:24–31.

    Article  CAS  PubMed  Google Scholar 

  149. Lyu Y, Zhang K, Chai F, Cheng T, Yang Q, Zheng Z, et al. Atmospheric size-resolved trace elements in a city affected by non-ferrous metal smelting: Indications of respiratory deposition and health risk. Environ Pollut. 2017;224:559–71.

    Article  CAS  PubMed  Google Scholar 

  150. Oberdorster G, Sharp Z, Atudorei V, Elder A, Gelein R, Kreyling W, et al. Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol. 2004;16(6-7):437–45.

    Article  CAS  PubMed  Google Scholar 

  151. Elder A, Gelein R, Silva V, Feikert T, Opanashuk L, Carter J, et al. Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environ Health Perspect. 2006;114(8):1172–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Yegambaram M, Manivannan B, Beach TG, Halden RU. Role of environmental contaminants in the etiology of Alzheimer's disease: a review. Curr Alzheimer Res. 2015;12(2):116–46.

    Article  CAS  PubMed  Google Scholar 

  153. Costa LG, Cole TB, Coburn J, Chang YC, Dao K, Roque PJ. Neurotoxicity of traffic-related air pollution. Neurotoxicology. 2017;59:133–9.

    Article  CAS  PubMed  Google Scholar 

  154. Inthavong K, Zhang K, Numerical TJ. modelling of nanoparticle deposition in the nasal cavity and the tracheobronchial airway. Comput Methods Biomech Biomed Eng. 2011;14(7):633–43.

    Article  Google Scholar 

  155. Garcia GJ, Schroeter JD, Kimbell JS. Olfactory deposition of inhaled nanoparticles in humans. Inhal Toxicol. 2015;27(8):394–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Dong J, Shang Y, Inthavong K, Tu J, Chen R, Bai R, et al. From the cover: comparative numerical modeling of inhaled nanoparticle deposition in human and rat nasal cavities. Toxicol Sci. 2016;152(2):284–96.

    Article  CAS  PubMed  Google Scholar 

  157. Krug HF. Nanosafety research—are we on the right track. Angew Chem. 2014;53(46):12304–19.

    CAS  Google Scholar 

Download references

Acknowledgements

We thank the Ministry of Science and Technology of China (2016YFA0201600), the National Natural Science Foundation of China (11621505, 91543206, 91643102, 21777036, 21477029), the National Science Fund for Distinguished Young Scholars (11425520), the Chinese Academy of Sciences Key Research Program for Frontier Sciences (QYZDJ-SSW-SLH022), the Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences (no. NSKF201613), and the Chinese Academy of Sciences (XDA09040400) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuliang Zhao or Chunying Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Published in the topical collection Analytical Developments in Advancing Safety in Nanotechnology with guest editors Lisa Holland and Wenwan Zhong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, R., Qiao, J., Bai, R. et al. Intelligent testing strategy and analytical techniques for the safety assessment of nanomaterials. Anal Bioanal Chem 410, 6051–6066 (2018). https://doi.org/10.1007/s00216-018-0940-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-0940-y

Keywords

Navigation