Skip to main content

Advertisement

Log in

Qualitative and quantitative temporal analysis of licit and illicit drugs in wastewater in Australia using liquid chromatography coupled to mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The combination of qualitative and quantitative bimonthly analysis of pharmaceuticals and illicit drugs using liquid chromatography coupled to mass spectrometry is presented. A liquid chromatography-quadrupole time of flight instrument equipped with Sequential Window Acquisition of all THeoretical fragment-ion spectra (SWATH) was used to qualitatively screen 346 compounds in influent wastewater from two wastewater treatment plants in South Australia over a 14-month period. A total of 100 compounds were confirmed and/or detected using this strategy, with 61 confirmed in all samples including antidepressants (amitriptyline, dothiepin, doxepin), antipsychotics (amisulpride, clozapine), illicit drugs (cocaine, methamphetamine, amphetamine, 3,4-methylenedioxymethamphetamine (MDMA)), and known drug adulterants (lidocaine and tetramisole). A subset of these compounds was also included in a quantitative method, analyzed on a liquid chromatography-triple quadrupole mass spectrometer. The use of illicit stimulants (methamphetamine) showed a clear decrease, levels of opioid analgesics (morphine and methadone) remained relatively stable, while the use of new psychoactive substances (methylenedioxypyrovalerone (MDPV) and Alpha PVP) varied with no visible trend. This work demonstrates the value that high-frequency sampling combined with quantitative and qualitative analysis can deliver.

Temporal analysis of licit and illicit drugs in South Australia

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zuccato E, Chiabrando C, Castiglioni S, Calamari D, Bagnati R, Schiarea S, et al. Cocaine in surface waters: a new evidence-based tool to monitor community drug abuse. Environ Heal A Glob Access Sci Source. 2005;4:14. https://doi.org/10.1186/1476-069X-4-14.

    Google Scholar 

  2. Ort C, van Nuijs ALN, Berset J-D, Bijlsma L, Castiglioni S, Covaci A, et al. Spatial differences and temporal changes in illicit drug use in Europe quantified by wastewater analysis. Addiction. 2014;109:1338–52. https://doi.org/10.1111/add.12570.

    Article  Google Scholar 

  3. Bade R, Bijlsma L, Sancho JV, Baz-Lomba JA, Castiglioni S, Castrignanò E, et al. Liquid chromatography-tandem mass spectrometry determination of synthetic cathinones and phenethylamines in influent wastewater of eight European cities. Chemosphere. 2017;168:1032–41. https://doi.org/10.1016/j.chemosphere.2016.10.107.

    Article  CAS  Google Scholar 

  4. Senta I, Krizman I, Ahel M, Terzic S. Multiresidual analysis of emerging amphetamine-like psychoactive substances in wastewater and river water. J Chromatogr A. 2015;1425:204–12. https://doi.org/10.1016/j.chroma.2015.11.043.

    Article  CAS  Google Scholar 

  5. Kinyua J, Covaci A, Maho W, McCall A-K, Neels H, van Nuijs ALN. Sewage-based epidemiology in monitoring the use of new psychoactive substances: validation and application of an analytical method using LC-MS/MS. Drug Test Anal. 2015;7:812–8. https://doi.org/10.1002/dta.1777.

    Article  CAS  Google Scholar 

  6. Borova VL, Gago-Ferrero P, Pistos C, Thomaidis NS. Multi-residue determination of 10 selected new psychoactive substances in wastewater samples by liquid chromatography–tandem mass spectrometry. Talanta. 2015;144:592–603. https://doi.org/10.1016/j.talanta.2015.06.080.

    Article  CAS  Google Scholar 

  7. Baz-Lomba JA, Salvatore S, Gracia-Lor E, Bade R, Castiglioni S, Castrignanò E, et al. Comparison of pharmaceutical, illicit drug, alcohol, nicotine and caffeine levels in wastewater with sale, seizure and consumption data for 8 European cities. BMC Public Health. 2016;16:1035. https://doi.org/10.1186/s12889-016-3686-5.

    Article  Google Scholar 

  8. Andrés-Costa MJ, Escrivá Ú, Andreu V, Picó Y. Estimation of alcohol consumption during “Fallas” festivity in the wastewater of Valencia city (Spain) using ethyl sulfate as a biomarker. Sci Total Environ. 2016;541:616–22. https://doi.org/10.1016/j.scitotenv.2015.09.126.

    Article  Google Scholar 

  9. Senta I, Gracia-Lor E, Borsotti A, Zuccato E, Castiglioni S. Wastewater analysis to monitor use of caffeine and nicotine and evaluation of their metabolites as biomarkers for population size assessment. Water Res. 2015;74:23–33. https://doi.org/10.1016/j.watres.2015.02.002.

    Article  CAS  Google Scholar 

  10. Hernández F, Ibáñez M, Bade R, Bijlsma L, Sancho JV. Investigation of pharmaceuticals and illicit drugs in waters by liquid chromatography-high-resolution mass spectrometry. TrAC Trends Anal Chem. 2014;63:140–57. https://doi.org/10.1016/j.trac.2014.08.003.

    Article  Google Scholar 

  11. Hernández F, Castiglioni S, Covaci A, de Voogt P, Emke E, Kasprzyk-Hordern B, et al. Mass spectrometric strategies for the investigation of biomarkers of illicit drug use in wastewater. Mass Spectrom Rev. 2016; https://doi.org/10.1002/mas.21525.

  12. van Nuijs ALN, Castiglioni S, Tarcomnicu I, Postigo C, Lopez de Alda M, Neels H, et al. Illicit drug consumption estimations derived from wastewater analysis: a critical review. Sci Total Environ. 2011;409:3564–77. https://doi.org/10.1016/j.scitotenv.2010.05.030.

    Article  Google Scholar 

  13. Causanilles A, Kinyua J, Ruttkies C, van Nuijs ALN, Emke E, Covaci A, et al. Qualitative screening for new psychoactive substances in wastewater collected during a city festival using liquid chromatography coupled to high-resolution mass spectrometry. Chemosphere. 2017;184:1186–93. https://doi.org/10.1016/j.chemosphere.2017.06.101.

    Article  CAS  Google Scholar 

  14. Bade R, Rousis NI, Bijlsma L, Gracia-Lor E, Castiglioni S, Sancho JV, et al. Screening of pharmaceuticals and illicit drugs in wastewater and surface waters of Spain and Italy by high resolution mass spectrometry using UHPLC-QTOF MS and LC-LTQ-Orbitrap MS. Anal Bioanal Chem. 2015;407:8979–88. https://doi.org/10.1007/s00216-015-9063-x.

    Article  CAS  Google Scholar 

  15. Bade R, Causanilles A, Emke E, Bijlsma L, Sancho J V., Hernandez F, de Voogt P (2016) Facilitating high resolution mass spectrometry data processing for screening of environmental water samples: an evaluation of two deconvolution tools. Sci Total Environ 569–570:434–441. doi: https://doi.org/10.1016/j.scitotenv.2016.06.162.

  16. Hernández F, Ibáñez M, Botero-Coy A-M, Bade R, Bustos-López MC, Rincón J, et al. LC-QTOF MS screening of more than 1,000 licit and illicit drugs and their metabolites in wastewater and surface waters from the area of Bogotá, Colombia. Anal Bioanal Chem. 2015;407:6405–16. https://doi.org/10.1007/s00216-015-8796-x.

    Article  Google Scholar 

  17. Gonzalez-Mariño I, Quintana JB, Rodriguez I, Gonzalez-Diez M, Cela R. Screening and selective quantification of illicit drugs in wastewater by mixed-mode solid-phase extraction and quadrupole-time-of-flight liquid chromatography–mass spectrometry. Anal Chem. 2012;84:1708–17. https://doi.org/10.1021/ac202989e.

    Article  Google Scholar 

  18. Letzel T, Bayer A, Schulz W, Heermann A, Lucke T, Greco G, et al. LC–MS screening techniques for wastewater analysis and analytical data handling strategies: Sartans and their transformation products as an example. Chemosphere. 2015;137:198–206. https://doi.org/10.1016/j.chemosphere.2015.06.083.

    Article  CAS  Google Scholar 

  19. Ibáñez M, Borova V, Boix C, Aalizadeh R, Bade R, Thomaidis NS, et al. UHPLC-QTOF MS screening of pharmaceuticals and their metabolites in treated wastewater samples from Athens. J Hazard Mater. 2017;323:26–35. https://doi.org/10.1016/j.jhazmat.2016.03.078.

    Article  Google Scholar 

  20. Zhu X, Chen Y, Subramanian R. Comparison of information-dependent acquisition, SWATH, and MSAll techniques in metabolite identification study employing ultrahigh-performance liquid chromatography–quadrupole time-of-flight mass spectrometry. Anal Chem. 2014;86:1202–9. https://doi.org/10.1021/ac403385y.

    Article  CAS  Google Scholar 

  21. Roemmelt AT, Steuer AE, Kraemer T. Liquid chromatography, in combination with a quadrupole time-of-flight instrument, with sequential window acquisition of all theoretical fragment-ion spectra acquisition: validated quantification of 39 antidepressants in whole blood as part of a simultaneous screening and quantification procedure. Anal Chem. 2015;87:9294–301. https://doi.org/10.1021/acs.analchem.5b02031.

    Article  CAS  Google Scholar 

  22. Anjo SI, Santa C, Manadas B. SWATH-MS as a tool for biomarker discovery: from basic research to clinical applications. Proteomics. 2017;17:3–4. https://doi.org/10.1002/pmic.201600278.

    Article  Google Scholar 

  23. Kang Y, Burton L, Lau A, Tate S. SWATH-ID: an instrument method which combines identification and quantification in a single analysis. Proteomics. 2017;201500522:1500522. https://doi.org/10.1002/pmic.201500522.

    Article  Google Scholar 

  24. Arnhard K, Gottschall A, Pitterl F, Oberacher H. Applying “Sequential Windowed Acquisition of All Theoretical Fragment Ion Mass Spectra” (SWATH) for systematic toxicological analysis with liquid chromatography-high-resolution tandem mass spectrometry. Anal Bioanal Chem. 2015;407:405–14. https://doi.org/10.1007/s00216-014-8262-1.

    Article  CAS  Google Scholar 

  25. Roemmelt AT, Steuer AE, Poetzsch M, Kraemer T. Liquid chromatography, in combination with a quadrupole time-of-flight instrument (LC QTOF), with sequential window acquisition of all theoretical fragment-ion spectra (SWATH) acquisition: systematic studies on its use for screenings in clinical and forensic toxicology and comparison with information-dependent acquisition (IDA). Anal Chem. 2014;86:11742–9. https://doi.org/10.1021/ac503144p.

    Article  CAS  Google Scholar 

  26. Scheidweiler KB, Jarvis MJY, Huestis MA. Nontargeted SWATH acquisition for identifying 47 synthetic cannabinoid metabolites in human urine by liquid chromatography-high-resolution tandem mass spectrometry. Anal Bioanal Chem. 2015;407:883–97. https://doi.org/10.1007/s00216-014-8118-8.

    Article  CAS  Google Scholar 

  27. Tscharke BJ, Chen C, Gerber JP, White JM. Temporal trends in drug use in Adelaide, South Australia by wastewater analysis. Sci Total Environ. 2016;565:384–91. https://doi.org/10.1016/j.scitotenv.2016.04.183.

    Article  CAS  Google Scholar 

  28. Chen C, Kostakis C, Irvine RJ, Felgate PD, White JM. Evaluation of pre-analysis loss of dependent drugs in wastewater: stability and binding assessments. Drug Testing and Analysis. 2013;5:716–21. https://doi.org/10.1002/dta.1428.

    Article  CAS  Google Scholar 

  29. Irvine RJ, Kostakis C, Felgate PD, Jaehne EJ, Chen C, White JM. Population drug use in Australia: a wastewater analysis. Forensic Sci Int. 2011;210:69–73. https://doi.org/10.1016/j.forsciint.2011.01.037.

    Article  CAS  Google Scholar 

  30. Horai H, Arita M, Kanaya S, Nihei Y, Ikeda T, Suwa K, et al. MassBank: a public repository for sharing mass spectral data for life sciences. J Mass Spectrom. 2010;45:703–14. https://doi.org/10.1002/jms.1777.

    Article  CAS  Google Scholar 

  31. Tang MHY, Ching CK, Tsui MSH, Chu FKC, Mak TWL. Two cases of severe intoxication associated with analytically confirmed use of the novel psychoactive substances 25B-NBOMe and 25C-NBOMe. Clin Toxicol. 2014;52:561–5. https://doi.org/10.3109/15563650.2014.909932.

    Article  CAS  Google Scholar 

  32. Stellpflug SJ, Kealey SE, Hegarty CB, Janis GC. 2-(4-Iodo-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine (25I-NBOMe): clinical case with unique confirmatory testing. J Med Toxicol. 2014;10:45–50. https://doi.org/10.1007/s13181-013-0314-y.

    Article  CAS  Google Scholar 

  33. Caspar AT, Helfer AG, Michely JA, Auwarter V, Brandt SD, Meyer MR, et al. Studies on the metabolism and toxicological detection of the new psychoactive designer drug 2-(4-iodo-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine (25I-NBOMe) in human and rat urine using GC-MS, LC-MS, and LC-HR-MS/MS. Anal Bioanal Chem. 2015:6697–719. https://doi.org/10.1007/s00216-015-8828-6.

  34. Daughton CG (2014) The Matthew effect and widely prescribed pharmaceuticals lacking environmental monitoring: case study of an exposure-assessment vulnerability. Sci Total Environ 466–467:315–325. doi: https://doi.org/10.1016/j.scitotenv.2013.06.111.

  35. Tscharke BJ, Chen C, Gerber JP, White JM. Trends in stimulant use in Australia: a comparison of wastewater analysis and population surveys. Sci Total Environ. 2015;536:331–7. https://doi.org/10.1016/j.scitotenv.2015.07.078.

    Article  CAS  Google Scholar 

  36. Burgard DA, Banta-Green C, Field JA. Working upstream: how far can you go with sewage-based drug epidemiology? Environ Sci Technol. 2014;48:1362–8. https://doi.org/10.1021/es4044648.

    Article  CAS  Google Scholar 

  37. Stojanovska N, Fu S, Tahtouh M, Kelly T, Beavis A, Kirkbride KP. A review of impurity profiling and synthetic route of manufacture of methylamphetamine, 3,4-methylenedioxymethylamphetamine, amphetamine, dimethylamphetamine and p-methoxyamphetamine. Forensic Sci Int. 2013;224:8–26. https://doi.org/10.1016/j.forsciint.2012.10.040.

    Article  CAS  Google Scholar 

  38. Li TL, Giang YS, Hsu JF, Cheng SG, Liu RH, Wang SM. Artifacts in the GC-MS profiling of underivatized methamphetamine hydrochloride. Forensic Sci Int. 2006;162:113–20. https://doi.org/10.1016/j.forsciint.2006.02.057.

    Article  CAS  Google Scholar 

  39. Shekari A, Akhgari M, Jokar F, Mousavi Z. Impurity characteristics of street methamphetamine crystals seized in Tehran, Iran. J Subst Use. 2015;21:1–5. https://doi.org/10.3109/14659891.2015.1068389.

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Drug and Alcohol Services South Australia, SA Health for their financial support. Richard Bade acknowledges the financial support of the Thyne Reid Foundation. We would also like to thank the staff at SA Water and Allwater for their assistance in sample collection. The kind donation of the reference standards used in this study by Forensics South Australia is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cobus Gerber.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 129 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bade, R., White, J.M. & Gerber, C. Qualitative and quantitative temporal analysis of licit and illicit drugs in wastewater in Australia using liquid chromatography coupled to mass spectrometry. Anal Bioanal Chem 410, 529–542 (2018). https://doi.org/10.1007/s00216-017-0747-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0747-2

Keywords

Navigation