Skip to main content

Advertisement

Log in

Optimization of ultrahigh-speed multiplex PCR for forensic analysis

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this paper, we demonstrate the design and optimization of an ultrafast PCR amplification technique, used with a seven-locus multiplex that is compatible with conventional capillary electrophoresis systems as well as newer microfluidic chip devices. The procedure involves the use of a high-speed polymerase and a rapid cycling protocol to permit multiplex PCR amplification of forensic short tandem repeat loci in 6.5 min. We describe the selection and optimization of master mix reagents such as enzyme, buffer, MgCl2, and dNTPs, as well as primer ratios, total volume, and cycle conditions, in order to get the best profile in the shortest time possible. Sensitivity and reproducibility studies are also described. The amplification process utilizes a small high-speed thermocycler and compact laptop, making it portable and potentially useful for rapid, inexpensive on-site genotyping. The seven loci of the multiplex were taken from conventional STR genotyping kits and selected for their size and lack of overlap. Analysis was performed using conventional capillary electrophoresis and microfluidics with fluorescent detection. Overall, this technique provides a more rapid method for rapid sample screening of suspects and victims.

Rapid amplification of forensic DNA using high speed thermal cycling followed by capillary or microfluidic electrophoresis

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

FTA®:

Fast technology for analysis of nucleic acids

RFU:

Relative fluorescence units

References

  1. Aboud M, Oh HH, McCord B. Rapid direct PCR for forensic genotyping in under 25 min. Electrophoresis. 2013;34(11):1539–47.

    Article  CAS  Google Scholar 

  2. Qiagen. For automated purification of DNA from forensic and biosecurity samples using EZ1 instruments. EZ1® DNA Investigator® Handbook. 2014.

  3. President's DNA Initiative. Protocol 3.05 Chelex®100 non-differential extraction. DNA analyst training: Laboratory training manual.

  4. Qiagen. QIAamp® DNA mini and blood mini handbook. 2016.

  5. ZyGEM. PDQeX DNA extraction device instruction manual. 2017.

  6. Horsman KM, Bienvenue JM, Blasier KR, Landers JP. Forensic DNA analysis on microfluidic devices: a review. J Forensic Sci. 2007;52(4):784–99.

    Article  CAS  Google Scholar 

  7. Wittwer CT, Fillmore GC, Hillyard DR. Automated polymerase chain reaction in capillary tubes with hot air. Nucleic Acids Res. 1989;17(11):4353–7.

    Article  CAS  Google Scholar 

  8. Giordano BC, Ferrance J, Swedberg S, Hühmer AFR, Landers JP. Polymerase chain reaction in polymeric microchips: DNA amplification in less than 240 seconds. Anal Biochem. 2001;291:124–32.

    Article  CAS  Google Scholar 

  9. Belgrader P, Benett W, Hadley D, Richards J, Stratton P, Mariella R Jr, et al. PCR detection of bacteria in seven minutes. Science. 1999;284(5413):449–50.

    Article  CAS  Google Scholar 

  10. Easley CJ, Karlinsey JM, Bienvenue JM, Legendre LA, Roper MG, Feldman SH, et al. A fully integrated microfluidic genetic analysis system with sample-in-answer-out capability. Proc Natl Acad Sci. 2006;103(51):19272–7.

    Article  CAS  Google Scholar 

  11. Liu P, Seo TS, Beyor N, Shin KJ, Scherer JR, Mathies RA. Integrated portable polymerase chain reaction-capillary electrophoresis microsystem for rapid forensic short tandem repeat typing. Anal Chem. 2007;79:1881–9.

    Article  CAS  Google Scholar 

  12. Liu P, Li X, Greenspoon SA, Scherer JR, Mathies RA. Integrated DNA purification, PCR, sample cleanup, and capillary electrophoresis microchip for forensic human identification. Lab Chip. 2011;11(6):1041–8.

    Article  CAS  Google Scholar 

  13. Khandurina J, McKnight TE, Jacobson SC, Waters LC, Foote RS, Ramsey JM. Integrated system for rapid PCR-based DNA analysis in microfluidic devices. Anal Chem. 2000;72:2995–00.

    Article  CAS  Google Scholar 

  14. Hopwood AJ, Hurth C, Yang J, Cai Z, Moran N, Lee-Edghill JG, et al. Integrated microfluidic system for rapid forensic DNA analysis: sample collection to DNA profile. Anal Chem. 2010;82(16):6991–9.

    Article  CAS  Google Scholar 

  15. Estes MD, Yang J, Duane B, Smith S, Brooks C, Nordquist A, et al. Optimization of multiplexed PCR on an integrated microfluidic forensic platform for rapid DNA analysis. Analyst. 2012;137:5510–9.

    Article  CAS  Google Scholar 

  16. Lounsbury JA, Karlsson A, Miranian DC, Cronk SM, Nelson DA, Li J, et al. From sample to PCR product in under 45 minutes: a polymeric integrated microdevice for clinical and forensic DNA analysis. Lab Chip. 2013;13(7):1384–93.

    Article  CAS  Google Scholar 

  17. Butts ELR, Vallone PM. Rapid PCR protocols for forensic DNA typing on six thermal cycling platforms. Electrophoresis. 2014;35(21–22):3053–61.

    Article  CAS  Google Scholar 

  18. Romsos EL, Vallone PM. Rapid PCR of STR markers: applications to human identification. Forensic Sci Int Genet. 2015;18:90–9.

    Article  CAS  Google Scholar 

  19. Belgrader P, Smith JK, Weedn VW, Northrup MA. Rapid PCR for identity testing using a battery-powered miniature thermal cycler. J Forensic Sci. 1998;43(2):315–9.

    Article  CAS  Google Scholar 

  20. Farrar JS, Wittwer CT. Extreme PCR: efficient and specific DNA amplification in 15–60 seconds. Clin Chem. 2015;61(1):145–53.

    Article  Google Scholar 

  21. Vallone PM, Hill CR, Podini D, Butler JM. Rapid amplification of commercial STR typing kits. Forensic Sci Int Genet Suppl Ser. 2009;2(1):111–2.

    Article  Google Scholar 

  22. Foster A, Laurin N. Development of a fast PCR protocol enabling rapid generation of AmpFlSTR® Identifiler® profiles for genotyping of human DNA. Investig Genet. 2012;3(1):6.

    Article  CAS  Google Scholar 

  23. Laurin N, Frégeau C. Optimization and validation of a fast amplification protocol for AmpFℓSTR® Profiler Plus® for rapid forensic human identification. Forensic Sci Int Genet. 2012;6(1):47–57.

    Article  CAS  Google Scholar 

  24. Vallone PM, Hill CR, Butler JM. Demonstration of rapid multiplex PCR amplification involving 16 genetic loci. Forensic Sci Int Genet. 2008;3(1):42–5.

    Article  CAS  Google Scholar 

  25. Gibson-Daw G, Albani P, Gassmann M, McCord B. Rapid microfluidic analysis of a Y-STR multiplex for screening of forensic samples. Anal Bioanal Chem. 2017;409(4):939–47.

    Article  CAS  Google Scholar 

  26. Budowle B, Waye J. Hae III—a suitable restriction endonuclease for restriction fragment length polymorphism analysis of biological evidence samples. J Forensic Sci. 1990;35(3):530–6.

    Article  CAS  Google Scholar 

  27. Giese H, Lam R, Selden R, Tan E. Fast multiplexed polymerase chain reaction for conventional and microfluidic short tandem repeat analysis. J Forensic Sci. 2009;54(6):1287–96.

    Article  CAS  Google Scholar 

  28. Kermekchiev MB, Kirilova LI, Vail EE, Barnes WM. Mutants of Taq DNA polymerase resistant to PCR inhibitors allow DNA amplification from whole blood and crude soil samples. Nucleic Acids Res. 2009;37(5):e40.

    Article  Google Scholar 

  29. Verheij S, Harteveld J, Sijen T. A protocol for direct and rapid multiplex PCR amplification on forensically relevant samples. Forensic Sci Int Genet. 2012;6(2):167–75.

    Article  CAS  Google Scholar 

  30. Comey CT, Koons BW, Presley KW, Smerick JB, Sobieralski CA, Stanley DM, et al. DNA extraction strategies for amplified fragment length polymorphism analysis. J Forensic Sci. 1994;39(5):1254–69.

    Article  CAS  Google Scholar 

  31. Imanaka T, Takagi M. Evolution of PCR enzymes (towards a better PCR system based on a KOD DNA polymerase). Chin J Chem Eng. 2001;32(3):277–88.

    CAS  Google Scholar 

  32. Wang Y, Prosen DE, Mei L, Sullivan JC, Finney M, Vander Horn PB. A novel strategy to engineer DNA polymerases for enhanced processivity and improved performance in vitro. Nucleic Acids Res. 2004;32(3):1197–07.

    Article  CAS  Google Scholar 

  33. de Vega M, Lazaro JM, Mencia M, Blanco L, Salas M. DNA polymerase amplification performance by fusion of DNA binding motifs. Proc Natl Acad Sci. 2010;107(38):16506–11.

    Article  Google Scholar 

  34. Scientific Working Group on DNA Analysis Methods (SWGDAM). SWGDAM interpretation guidelines for autosomal STR typing by forensic DNA testing laboratories. 2010.

  35. Aboud M, Gassmann M, McCord B. Ultrafast STR separations on short channel microfluidic systems for forensic screening, and genotyping. J Forensic Sci. 2015;60(5):1121–39.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Streck Inc. and Agilent Technologies for their technical assistance and support. We also would like to thank Marcus Gassmann and Maurice Aboud for their technical support. This project was supported by Award No. 2015-IJ-CXK038 of the National Institute of Justice, Office of Justice programs, U.S. Department of Justice. Points of view in the document are those of the authors and do not necessarily represent the official view of the U.S. Department of Justice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce McCord.

Ethics declarations

Sampling of individuals was done with their informed consent, via signed consent forms, and in accordance with the guidelines and regulations set in place by the FIU IRB and approved under reference number 101831.

Conflict of interest

Technical assistance and support for this project were provided by Agilent Technologies and Streck. The authors declare no other conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gibson-Daw, G., Crenshaw, K. & McCord, B. Optimization of ultrahigh-speed multiplex PCR for forensic analysis. Anal Bioanal Chem 410, 235–245 (2018). https://doi.org/10.1007/s00216-017-0715-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0715-x

Keywords

Navigation