Skip to main content
Log in

Improving elution strategies for Chelex®-DGT passive samplers

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Elution of Chelex® binding layers, commonly used for the diffusive gradients in thin films technique (DGT), is recognized as the most important contributor to the uncertainty of DGT measurements. Limiting uncertainty requires the use of optimized procedures and suitable elution recoveries (f e ). This work therefore investigated elution robustness to propose improved strategies. A wide range of conditions were investigated for the main elution parameters (Chelex® particle size, elution time, Chelex® loading, and eluent concentration and volume) on Al(III), Cd(II), Co(II), Cr(III), Cu(II), Ni(II), Pb(II), and Zn(II). Results showed that the choice of elution conditions should be a compromise driven by study constrains in terms of accuracy, repeatability, sensitivity, and targeted elements. Using experimentally determined recoveries should improve accuracy by approximately 5 to 10% compared to the use of recoveries from the literature. Fast elution of 1 h can be achieved without significant loss of recovery and repeatability except for Cr(III) (8 h minimum). Elution recovery depended on Chelex® loading for Zn and Cr and introducing recoveries adapted to the loading could improve accuracy up to, respectively, 11 and 27%. When standard recoveries are used, a 0.85 f e value would be more appropriate than the common value of 0.8 to minimize inaccuracy (except for Cr). Some flexibility can be applied to elution conditions without a significant change in recovery for most elements: HNO3 concentration of 1–15 M, volume of 1–2 mL, duration of 8–48 h. Cr(III) was unique in its sensitivity to elution condition variations; thus, choice is more restricted for this element.

Decisional tree for choosing elution procedure and recoveries for Chelex®-DGT

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Davison W, Zhang H. In situ speciation measurements of trace components in natural waters using thin-film gels. Nature. 1994;367:546–8. https://doi.org/10.1038/367546a0.

    Article  CAS  Google Scholar 

  2. Davison W, Zhang H. Progress in understanding the use of diffusive gradients in thin films (DGT)—back to basics. Environ Chem. 2012;9:1–13. https://doi.org/10.1071/EN11084.

    Article  CAS  Google Scholar 

  3. Dabrin A, Ghestem J-P, Uher E, Gonzalez J-L, Allan IJ, Schintu M, et al. Metal measurement in aquatic environments by passive sampling methods: lessons learning from an in situ intercomparison exercise. Environ Pollut. 2016;208(Part B):299–308. https://doi.org/10.1016/j.envpol.2015.08.049.

    Article  CAS  Google Scholar 

  4. Buzier R, Tusseau-Vuillemin M-H, Keirsbulck M, Mouchel J-M. Inputs of total and labile trace metals from wastewater treatment plants effluents to the Seine River. Phys Chem Earth Parts ABC. 2011;36:500–5. https://doi.org/10.1016/j.pce.2008.09.003.

    Article  Google Scholar 

  5. Garrido RT, Mendoza CJ. Application of diffusive gradient in thin film to estimate available copper in soil solution. Soil Sediment Contam Int J. 2013;22:654–66. https://doi.org/10.1080/15320383.2013.756447.

    Article  Google Scholar 

  6. Roulier J-L, Belaud S, Coquery M. Comparison of dynamic mobilization of Co, Cd and Pb in sediments using DGT and metal mobility assessed by sequential extraction. Chemosphere. 2010;79:839–43. https://doi.org/10.1016/j.chemosphere.2010.02.056.

    Article  CAS  Google Scholar 

  7. Kreuzeder A, Santner J, Zhang H, Prohaska T, Wenzel WW. Uncertainty evaluation of the diffusive gradients in thin films technique. Environ Sci Technol. 2015;49:1594–602. https://doi.org/10.1021/es504533e.

    Article  CAS  Google Scholar 

  8. Zhang H, Davison W. Performance characteristics of diffusion gradients in thin films for the in situ measurement of trace metals in aqueous solution. Anal Chem. 1995;67:3391–400. https://doi.org/10.1021/ac00115a005.

    Article  CAS  Google Scholar 

  9. Torre MCA-DLA, Beaulieu P-Y, Tessier A. In situ measurement of trace metals in lakewater using the dialysis and DGT techniques. Anal Chim Acta. 2000;418:53–68. https://doi.org/10.1016/S0003-2670(00)00946-6.

    Article  Google Scholar 

  10. Ernstberger H, Zhang H, Davison W. Determination of chromium speciation in natural systems using DGT. Anal Bioanal Chem. 2002;373:873–9. https://doi.org/10.1007/s00216-002-1370-3.

    Article  CAS  Google Scholar 

  11. Downard AJ, Panther J, Kim Y-C, Powell KJ. Lability of metal ion-fulvic acid complexes as probed by FIA and DGT: a comparative study. Anal Chim Acta. 2003;499:17–28. https://doi.org/10.1016/S0003-2670(03)00947-4.

    Article  CAS  Google Scholar 

  12. Warnken KW, Zhang H, Davison W. Performance characteristics of suspended particulate reagent-iminodiacetate as a binding agent for diffusive gradients in thin films. Anal Chim Acta. 2004;508:41–51. https://doi.org/10.1016/j.aca.2003.11.051.

    Article  CAS  Google Scholar 

  13. Warnken KW, Zhang H, Davison W. Accuracy of the diffusive gradients in thin-films technique: diffusive boundary layer and effective sampling area considerations. Anal Chem. 2006;78:3780–7. https://doi.org/10.1021/ac060139d.

    Article  CAS  Google Scholar 

  14. Panther JG, Bennett WW, Teasdale PR, Welsh DT, Zhao H. DGT measurement of dissolved aluminum species in waters: comparing Chelex-100 and titanium dioxide-based adsorbents. Environ Sci Technol. 2012;46:2267–75. https://doi.org/10.1021/es203674n.

    Article  CAS  Google Scholar 

  15. Panther JG, Bennett WW, Welsh DT, Teasdale PR. Simultaneous measurement of trace metal and oxyanion concentrations in water using diffusive gradients in thin films with a Chelex–Metsorb mixed binding layer. Anal Chem. 2014;86:427–34. https://doi.org/10.1021/ac402247j.

    Article  CAS  Google Scholar 

  16. Buzier R, Charriau A, Corona D, Lenain J-F, Fondanèche P, Joussein E, et al. DGT-labile As, Cd, Cu and Ni monitoring in freshwater: toward a framework for interpretation of in situ deployment. Environ Pollut. 2014;192:52–8. https://doi.org/10.1016/j.envpol.2014.05.017.

    Article  CAS  Google Scholar 

  17. Tonello PS, Goveia D, Rosa AH, Fraceto LF, Menegário AA. Determination of labile inorganic and organic species of Al and Cu in river waters using the diffusive gradients in thin films technique. Anal Bioanal Chem. 2011;399:2563–70. https://doi.org/10.1007/s00216-010-4603-x.

    Article  CAS  Google Scholar 

  18. Garmo ØA, Røyset O, Steinnes E, Flaten TP. Performance study of diffusive gradients in thin films for 55 elements. Anal Chem. 2003;75:3573–80. https://doi.org/10.1021/ac026374n.

    Article  CAS  Google Scholar 

  19. Twiss MR, Moffett JW. Comparison of copper speciation in coastal marine waters measured using analytical voltammetry and diffusion gradient in thin-film techniques. Environ Sci Technol. 2002;36:1061–8. https://doi.org/10.1021/es0016553.

    Article  CAS  Google Scholar 

  20. Sangi MR, Halstead MJ, Hunter KA. Use of the diffusion gradient thin film method to measure trace metals in fresh waters at low ionic strength. Anal Chim Acta. 2002;456:241–51. https://doi.org/10.1016/S0003-2670(02)00012-0.

    Article  CAS  Google Scholar 

  21. Dočekal B, Rezacova-Smetkova V, Dočekalová H. Effect of humic acid on metal uptake measured by diffusive gradients in thin films technique. Chem Pap. 2005;59:298–303.

    Google Scholar 

  22. Ernstberger H, Zhang H, Tye A, Young S, Davison W. Desorption kinetics of Cd, Zn, and Ni measured in soils by DGT. Environ Sci Technol. 2005;39:1591–7. https://doi.org/10.1021/es048534d.

    Article  CAS  Google Scholar 

  23. Jansen B, Kotte MC, van Wijk AJ, Verstraten JM. Comparison of diffusive gradients in thin films and equilibrium dialysis for the determination of Al, Fe(III) and Zn complexed with dissolved organic matter. Sci Total Environ. 2001;277:45–55. https://doi.org/10.1016/S0048-9697(01)00911-1.

    Article  CAS  Google Scholar 

  24. Kraal P, Jansen B, Nierop KGJ, Verstraten JM. Copper complexation by tannic acid in aqueous solution. Chemosphere. 2006;65:2193–8. https://doi.org/10.1016/j.chemosphere.2006.05.058.

    Article  CAS  Google Scholar 

  25. de Oliveira RLF, Pedrobom JH, Menegário AA, Domingos RN, Py Júnior DA, Kiang CH. Determination of in situ speciation of manganese in treated acid mine drainage water by using multiple diffusive gradients in thin films devices. Anal Chim Acta. 2013;799:23–8. https://doi.org/10.1016/j.aca.2013.09.022.

    Article  Google Scholar 

  26. Tonello PS, Rosa AH, Abreu CH Jr, Menegário AA. Use of diffusive gradients in thin films and tangential flow ultrafiltration for fractionation of Al(III) and Cu(II) in organic-rich river waters. Anal Chim Acta. 2007;598:162–8. https://doi.org/10.1016/j.aca.2007.07.013.

    Article  CAS  Google Scholar 

  27. Atzei D, Ferri T, Sadun C, Sangiorgio P, Caminiti R. Structural characterization of complexes between iminodiacetate blocked on styrene−divinylbenzene matrix (Chelex 100 resin) and Fe(III), Cr(III), and Zn(II) in solid phase by energy-dispersive X-ray diffraction. J Am Chem Soc. 2001;123:2552–8. https://doi.org/10.1021/ja0003728.

    Article  CAS  Google Scholar 

  28. Wang C-C, Chang C-Y, Chen C-Y. Study on metal ion adsorption of bifunctional chelating/ion-exchange resins. Macromol Chem Phys. 2001;202:882–90. https://doi.org/10.1002/1521-3935(20010301)202:6<882::AID-MACP882>3.0.CO;2-K.

    Article  CAS  Google Scholar 

  29. Devillers D, Buzier R, Grybos M, Charriau A, Guibaud G. Key role of the sorption process in alteration of metal and metalloid quantification by fouling development on DGT passive samplers. Environ Pollut. 2017;230:523–9. https://doi.org/10.1016/j.envpol.2017.07.005.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Delphine Devillers acknowledges a Ph.D. grant from the Limousin Region. The authors thank Patrice Fondanèche for his technical assistance on ICP-MS measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rémy Buzier.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 596 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devillers, D., Buzier, R., Charriau, A. et al. Improving elution strategies for Chelex®-DGT passive samplers. Anal Bioanal Chem 409, 7183–7189 (2017). https://doi.org/10.1007/s00216-017-0680-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0680-4

Keywords

Navigation