Skip to main content
Log in

Plasmonic gold nanoparticles for detection of fungi and human cutaneous fungal infections

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Fungi, which are common in the environment, can cause a multitude of diseases. Warm, humid conditions allow fungi to grow and infect humans via the respiratory, digestive and reproductive tracts, genital area and other bodily interfaces. Fungi can be detected directly by microscopy, using the potassium hydroxide test, which is the gold standard and most popular method for fungal screening. However, this test requires trained personnel operating specialist equipment, including a fluorescent microscope and culture facilities. As most acutely infected patients seek medical attention within the first few days of symptoms, the optimal diagnostic test would be rapid and self-diagnostic simplifying and improving the therapeutic outcome. In suspensions of gold nanoparticles, Aspergillus niger can cause a colour change from red to blue within 2 min, as a result of changes in nanoparticle shape. A similar colour change was observed in the supernatant of samples of human toenails dispersed in water. Scanning electron microscopy, UV/Vis and Raman spectroscopy were employed to monitor the changes in morphology and surface plasmon resonance of the nanoparticles. The correlation of colour change with the fungal infection was analysed using the absorbance ratio at 520 nm/620 nm. We found a decrease in the ratio when the fungi concentration increased from 1 to 16 CFU/mL, with a detection limit of 10 CFU/mL. The test had an 80% sensitivity and a 95% specificity value for the diagnosis of athlete’s foot in human patients. This plasmonic gold nanoparticle-based system for detection of fungal infections measures the change in shape of gold nanoparticles and generates coloured solutions with distinct tonality. Our application has the potential to contribute to self-diagnosis and hygiene control in laboratories/hospitals with fewer resources, just using the naked eye.

Colorimetric method for fungi detection with gold nano particles

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Free TA. Current diagnosis and treatment in infectious diseases. Nurse Pract. 2002;27(2):43.

    Google Scholar 

  2. Kirk P, Cannon P, David J, Stalpers J. Ainsworth and Bisby’s dictionary of the fungi. Ainsworth and Bisby’s dictionary of the fungi: 9th edition (Ed. 9); 2001.

  3. Fleming RV, Walsh TJ, Anaissie EJ. Emerging and less common fungal pathogens. Infect Dis Clin N Am. 2002;16(4):915–33.

    Article  Google Scholar 

  4. McNeil MM, Nash SL, Hajjeh RA, Phelan MA, Conn LA, Plikaytis BD, et al. Trends in mortality due to invasive mycotic diseases in the United States, 1980–1997. Clin Infect Dis. 2001;33(5):641–7.

    Article  CAS  Google Scholar 

  5. Elewski BE. Onychomycosis: pathogenesis, diagnosis, and management. Clin Microbiol Rev. 1998;11(3):415–29.

    CAS  Google Scholar 

  6. Vélez A, Linares MJ, Fenández-Roldán JC, Casal M. Study of onychomycosis in Cordoba, Spain: prevailing fungi and pattern of infection. Mycopathologia. 1997;137(1):1–8.

    Article  Google Scholar 

  7. Godoy P, Nunes F, Silva V, Tomimori-Yamashita J, Zaror L, Fischman O. Onychomycosis caused by Fusarium solani and Fusarium oxysporum in Sao Paulo, Brazil. Mycopathologia. 2004;157(3):287–90.

    Article  CAS  Google Scholar 

  8. Kemna ME, Elewski BE. A US epidemiologic survey of superficial fungal diseases. J Am Acad Dermatol. 1996;35(4):539–42.

    Article  CAS  Google Scholar 

  9. Sellami A, Sellami H, Makni F, Mezghani S, Cheikh-Rouhou F, Marrekchi S, et al. Childhood dermatomycoses study in Sfax hospital, Tunisia. Mycoses. 2008;51(5):451–4.

    Article  CAS  Google Scholar 

  10. Svejgaard E, Nilsson J. Onychomycosis in Denmark: prevalence of fungal nail infection in general practice. Mycoses. 2004;47(3–4):131–5.

    Article  CAS  Google Scholar 

  11. Baran R. The nail in the elderly. Clin Dermatol. 2011;29(1):54–60.

    Article  Google Scholar 

  12. Baran R, Haneke E, Hay RJ, Piraccini BM, Tosti A. Onychomycosis: the current approach to diagnosis and therapy. CRC Press; 1999.

  13. Bontems O, Hauser P, Monod M. Evaluation of a polymerase chain reaction-restriction fragment length polymorphism assay for dermatophyte and nondermatophyte identification in onychomycosis. Br J Dermatol. 2009;161(4):791–6.

    Article  CAS  Google Scholar 

  14. Kitching M, Ramani M, Marsili E. Fungal biosynthesis of gold nanoparticles: mechanism and scale up. Microb Biotechnol. 2015;8(6):904–17.

    Article  CAS  Google Scholar 

  15. Han HW, Hsu MM-L, Choi JS, Hsu C-K, Hsieh HY, Li HC, et al. Rapid detection of dermatophytes and Candida albicans in onychomycosis specimens by an oligonucleotide array. BMC Infect Dis. 2014;14(1):1.

    Article  Google Scholar 

  16. Pickering JW, Sant HW, Bowles CA, Roberts WL, Woods GL. Evaluation of a (1→3)-β-D-glucan assay for diagnosis of invasive fungal infections. J Clin Microbiol. 2005;43(12):5957–62.

    Article  CAS  Google Scholar 

  17. Van Thiel DH, George M, Moore CM (2012) Fungal infections: their diagnosis and treatment in transplant recipients. Int J Hepatol 2012.

  18. Guarner J, Brandt ME. Histopathologic diagnosis of fungal infections in the 21st century. Clin Microbiol Rev. 2011;24(2):247–80. doi:10.1128/CMR.00053-10.

    Article  Google Scholar 

  19. Andrews MD, Burns M. Common tinea infections in children. Am Fam Physician. 2008;77(10):1415–20.

    Google Scholar 

  20. Sugunan A, Melin P, Schnurer J, Hilborn JG, Dutta J. Nutrition-driven assembly of colloidal nanoparticles: growing fungi assemble gold nanoparticles as microwires. Adv Mater. 2007;19(1):77–81.

    Article  CAS  Google Scholar 

  21. Li Z, Chung SW, Nam JM, Ginger DS, Mirkin CA. Living templates for the hierarchical assembly of gold nanoparticles. Angew Chem Int Ed Engl. 2003;42(20):2306–9. doi:10.1002/anie.200351231.

    Article  Google Scholar 

  22. Conde J, Bao C, Cui D, Baptista PV, Tian F. Antibody-drug gold nanoantennas with Raman spectroscopic fingerprints for in vivo tumour theranostics. J Control Release. 2014;183:87–93. doi:10.1016/j.jconrel.2014.03.045.

    Article  CAS  Google Scholar 

  23. Bao C, Chen L, Wang T, Lei C, Tian F, Cui D, et al. One step quick detection of cancer cell surface marker by integrated NiFe-based magnetic biosensing cell cultural chip. Nano-Micro Letters. 2013;5(3):213–22.

    Article  Google Scholar 

  24. Conde J, Tian F, Hernandez Y, Bao C, Cui D, Janssen KP, et al. In vivo tumor targeting via nanoparticle-mediated therapeutic siRNA coupled to inflammatory response in lung cancer mouse models. Biomaterials. 2013;34(31):7744–53. doi:10.1016/j.biomaterials.2013.06.041.

    Article  CAS  Google Scholar 

  25. Conde J, Ambrosone A, Sanz V, Hernandez Y, Marchesano V, Tian F, et al. Design of multifunctional gold nanoparticles for in vitro and in vivo gene silencing. ACS Nano. 2012;6(9):8316–24. doi:10.1021/nn3030223.

    Article  CAS  Google Scholar 

  26. Bao C, Beziere N, del Pino P, Pelaz B, Estrada G, Tian F, et al. Gold nanoprisms as optoacoustic signal nanoamplifiers for in vivo bioimaging of gastrointestinal cancers. Small. 2013;9(1):68–74.

    Article  CAS  Google Scholar 

  27. Bhaskar S, Tian F, Stoeger T, Kreyling W, de la Fuente JM, Grazu V, et al. Multifunctional nanocarriers for diagnostics, drug delivery and targeted treatment across blood-brain barrier: perspectives on tracking and neuroimaging. Part Fibre Toxicol. 2010;7:3. doi:10.1186/1743-8977-7-3.

    Article  Google Scholar 

  28. Bao C, Tian F, Estrada G. Improved visualisation of internalised carbon nanotubes by maximising cell spreading on nanostructured substrates. Nano Biomed Eng. 2011;2(4):201–10.

    Google Scholar 

  29. De La Rica R, Stevens MM. Plasmonic ELISA for the ultrasensitive detection of disease biomarkers with the naked eye. Nat Nanotechnol. 2012;7(12):821–4.

    Article  CAS  Google Scholar 

  30. Das SK, Dickinson C, Lafir F, Brougham DF, Marsili E. Synthesis, characterization and catalytic activity of gold nanoparticles biosynthesized with Rhizopus oryzae protein extract. Green Chem. 2012;14(5):1322–34.

    Article  CAS  Google Scholar 

  31. Tian F, Bonnier F, Casey A, Shanahan AE, Byrne HJ. Surface enhanced Raman scattering with gold nanoparticles: effect of particle shape. Anal Methods. 2014;6(22):9116–23.

    Article  CAS  Google Scholar 

  32. Mukherjee P, Senapati S, Mandal D, Ahmad A, Khan MI, Kumar R, et al. Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. Chembiochem. 2002;3(5):461–3. doi:10.1002/1439-7633(20020503)3:5<461::AID-CBIC461>3.0.CO;2-X.

    Article  CAS  Google Scholar 

  33. Cohen R, Persky L, Hadar Y. Biotechnological applications and potential of wood-degrading mushrooms of the genus Pleurotus. Appl Microbiol Biotechnol. 2002;58(5):582–94.

    Article  CAS  Google Scholar 

  34. Fischbach FT, Dunning MB. A manual of laboratory and diagnostic tests. Lippincott Williams & Wilkins; 2009.

  35. Tian F, Conde J, Bao C, Chen Y, Curtin J, Cui D. Gold nanostars for efficient in vitro and in vivo real-time SERS detection and drug delivery via plasmonic-tunable Raman/FTIR imaging. Biomaterials. 2016;106:87–97.

    Article  CAS  Google Scholar 

  36. Singh DK, Ganbold E-O, Cho E-M, Cho K-H, Kim D, Choo J, et al. Detection of the mycotoxin citrinin using silver substrates and Raman spectroscopy. J Hazard Mater. 2014;265:89–95.

    Article  CAS  Google Scholar 

  37. Khoury CG, Vo-Dinh T. Gold nanostars for surface-enhanced Raman scattering: synthesis, characterization and optimization. J Phys Chem C. 2008;112(48):18849–59.

    Article  CAS  Google Scholar 

  38. Kuyucak N, Volesky B. Biosorbents for recovery of metals from industrial solutions. Biotechnol Lett. 1988;10(2):137–42.

    Article  CAS  Google Scholar 

  39. Tsuruta T. Biosorption and recycling of gold using various microorganisms. J Gen Appl Microbiol. 2004;50(4):221–8.

    Article  CAS  Google Scholar 

  40. Taherzadeh MJ, Fox M, Hjorth H, Edebo L. Production of mycelium biomass and ethanol from paper pulp sulfite liquor by Rhizopus oryzae. Bioresour Technol. 2003;88(3):167–77.

    Article  CAS  Google Scholar 

  41. Xu B, Jahic M, Blomsten G, Enfors S-O. Glucose overflow metabolism and mixed-acid fermentation in aerobic large-scale fed-batch processes with Escherichia coli. Appl Microbiol Biotechnol. 1999;51(5):564–71.

    Article  Google Scholar 

  42. Bhambure R, Bule M, Shaligram N, Kamat M, Singhal R. Extracellular biosynthesis of gold nanoparticles using Aspergillus niger—its characterization and stability. Chem Eng Technol. 2009;32(7):1036–41.

    Article  CAS  Google Scholar 

  43. Binupriya A, Sathishkumar M, Vijayaraghavan K, Yun S-I. Bioreduction of trivalent aurum to nano-crystalline gold particles by active and inactive cells and cell-free extract of Aspergillus oryzae var. viridis. J Hazard Mater. 2010;177(1):539–45.

    Article  CAS  Google Scholar 

  44. Gole A, Dash C, Ramakrishnan V, Sainkar S, Mandale A, Rao M, et al. Pepsin-gold colloid conjugates: preparation, characterization, and enzymatic activity. Langmuir. 2001;17(5):1674–9.

    Article  CAS  Google Scholar 

  45. Vigneshwaran N, Kathe AA, Varadarajan PV, Nachane RP, Balasubramanya RH. Silver-protein (core-shell) nanoparticle production using spent mushroom substrate. Langmuir. 2007;23(13):7113–7.

    Article  CAS  Google Scholar 

  46. Wyss M, Brugger R, Kronenberger A, Rémy R, Fimbel R, Oesterhelt G, et al. Biochemical characterization of fungal phytases (myo-inositol hexakisphosphate phosphohydrolases): catalytic properties. Appl Environ Microbiol. 1999;65(2):367–73.

    CAS  Google Scholar 

  47. European Union (Drinking Water) Regulations. S.I. No. 122/2014. Ireland: Irish Statute Book; 2014.

  48. Bathing Water Quality Regulations. S.I. No. 79/2008. Ireland: Irish Statute Book; 2008.

Download references

Acknowledgments

T.S. and K.L. thank Fiosraigh Scholarship Programme from Dublin Institute Technology. F.T. acknowledges Enterprise Ireland CF-2015-0269-Y. This work is supported by the National Natural Scientific Fund (No. 81225010), 863 Project of China (2014AA020700), Shanghai Science and Technology Fund (No. 13NM1401500) and Shanghai Jiao Tong University Innovation Fund for Postgraduates (No. AE340011).

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: T.S., J.C., K.L., J.C., F.T. Analysed the data: T.S., J.C., K.L., F.T. Contributed reagents/materials/analysis tools: J.C., D.C., F.T. Wrote the paper: K.L., J.C., H.J.B., F.T., T.S.

Corresponding authors

Correspondence to João Conde or Furong Tian.

Ethics declarations

Ethical committee approval

Clinical specimen experiments were performed according to the Guidelines for Ethical Committee, Shanghai Jiao Tong University. All the experiments used in this study complied with current ethical considerations: Approval (SYXK-2007-0025) of Ethical Committee of Shanghai Jiao Tong University (Shanghai, China).

Conflict of interest

The authors declare that there is no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 463 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sojinrin, T., Conde, J., Liu, K. et al. Plasmonic gold nanoparticles for detection of fungi and human cutaneous fungal infections. Anal Bioanal Chem 409, 4647–4658 (2017). https://doi.org/10.1007/s00216-017-0414-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0414-7

Keywords

Navigation