Skip to main content
Log in

Solid-film sampling method for the determination of protein secondary structure by Fourier transform infrared spectroscopy

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Fourier transform infrared (FTIR) spectroscopy is one of the widely used vibrational spectroscopic methods in protein structural analysis. The protein solution sample loaded in demountable CaF2 liquid cell presents a challenge and is limited to high concentrations. Some researchers attempted the simpler solid-film sampling method for the collection of protein FTIR spectra. In this study, the solid-film sampling FTIR method was studied in detail. The secondary structure components of some globular proteins were determined by this sampling method, and the results were consistent with those data determined by the traditional solution sampling FTIR method and X-ray crystallography, indicating that this sampling method is feasible and efficient for the structural characterization of proteins. Furthermore, much lower protein concentrations (~0.5 mg/mL) were needed to obtain high-quality FTIR spectra, which expands the application of FTIR spectroscopy to almost the same concentration range used for circular dichroism and fluorescence spectroscopy, making comparisons among three commonly used techniques possible in protein studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Smith BC. Fundamentals of Fourier transform infrared spectroscopy. Boca Raton: CRC Press; 1996.

    Google Scholar 

  2. Surewicz WK, Mantsch HH. New insight into protein secondary structure from resolution-enhanced infrared spectra. Biochim Biophys Acta Protein Struct Mol Enzymol. 1988;952:115–30.

    Article  CAS  Google Scholar 

  3. Zhao Y, Yang H, Meng K, Yu S. Probing the Ca 2+/CaM-induced secondary structural and conformational changes in calcineurin. Int J Biol Macromol. 2014;64:453–7.

    Article  CAS  Google Scholar 

  4. Fu C, Zhang J, Zheng Y, Xu H, Yu S. Binding of calmodulin changes the calcineurin regulatory region to a less dynamic conformation. Int J Biol Macromol. 2015;79:235–9.

    Article  CAS  Google Scholar 

  5. Jiang Y, Li C, Nguyen X, Muzammil S, Towers E, Gabrielson J, et al. Qualification of FTIR spectroscopic method for protein secondary structural analysis. J Pharm Sci. 2011;100(11):4631–41.

    Article  CAS  Google Scholar 

  6. Goormaghtigh E, Ruysschaert J-M, Raussens V. Evaluation of the information content in infrared spectra for protein secondary structure determination. Biophys J. 2006;90(8):2946–57.

    Article  CAS  Google Scholar 

  7. Parker FS. Applications of infrared, Raman, and resonance Raman spectroscopy in biochemistry. Springer Science & Business Media; 1983.

  8. Byler DM, Susi H. Examination of the secondary structure of proteins by deconvolved FTIR spectra. Biopolymers. 1986;25(3):469–87.

    Article  CAS  Google Scholar 

  9. Susi H. Infrared spectroscopy—conformation. Methods Enzymol. 1972;26:455–72.

    Article  CAS  Google Scholar 

  10. Griffiths P, Durig J. Analytical applications of FT-IR to molecular and biological systems. Dordrecht: Reidel; 1980. 11

    Google Scholar 

  11. Susi H, Timasheff SN, Stevens L. Infrared spectra and protein conformations in aqueous solutions I. The amide I band in H2O and D2O solutions. J Biol Chem. 1967;242(23):5460–6.

    CAS  Google Scholar 

  12. Gorga JC, Dong A, Manning MC, Woody RW, Caughey WS, Strominger JL. Comparison of the secondary structures of human class I and class II major histocompatibility complex antigens by Fourier transform infrared and circular dichroism spectroscopy. Proc Natl Acad Sci India. 1989;86(7):2321–5.

    CAS  Google Scholar 

  13. Lee DC, Haris PI, Chapman D, Mitchell RC. Determination of protein secondary structure using factor analysis of infrared spectra. Biochemistry. 1990;29(39):9185–93.

    Article  CAS  Google Scholar 

  14. Yamamoto T, Tasumi M. FT-IR studies on thermal denaturation processes of ribonucleases A and S in H2O and D2O solutions. J Mol Struct. 1991;242:235–44.

    Article  CAS  Google Scholar 

  15. Kong J, Yu S. Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim Biophys Sin. 2007;39(8):549–59.

    Article  CAS  Google Scholar 

  16. Fu C, Yang H, Wang M, Xiong H, Yu S. Serum albumin adsorbed on Au nanoparticles: structural changes over time induced by S–Au interaction. Chem Commun. 2015;51(17):3634–6.

    Article  CAS  Google Scholar 

  17. Wang M, Fu C, Liu X, Lin Z, Yang N, Yu S. Probing the mechanism of plasma protein adsorption on Au and Ag nanoparticles with FT-IR spectroscopy. Nano. 2015;7(37):15191–6.

    CAS  Google Scholar 

  18. Wu G, Gao Z, Dong A, Yu S. Calcium-induced changes in calmodulin structural dynamics and thermodynamics. Int J Biol Macromol. 2012;50(4):1011–7.

    Article  CAS  Google Scholar 

  19. Dong A, Huang P, Caughey WS. Redox-dependent changes in. beta.-extended chain and turn structures of cytochrome c in water solution determined by second derivative amide I infrared spectra. Biochemistry. 1992;31(1):182–9.

    Article  CAS  Google Scholar 

  20. Kal'Nin N, Ven'yaminov SY. Quantitative measurement of the IR spectra of water solutions. J Appl Chem. 1988;49(4):1028–32.

    Google Scholar 

  21. Yang H, Yang S, Kong J, Dong A, Yu S. Obtaining information about protein secondary structures in aqueous solution using Fourier transform IR spectroscopy. Nat Protoc. 2015;10(3):382–96.

    Article  CAS  Google Scholar 

  22. Dong A, Randolph TW, Carpenter JF. Entrapping intermediates of thermal aggregation in alpha-helical proteins with low concentration of guanidine hydrochloride. J Biol Chem. 2000;275(36):27689–93.

    CAS  Google Scholar 

  23. Ismail AA, Mantsch HH, Wong PT. Aggregation of chymotrypsinogen: portrait by infrared spectroscopy. Biochim Biophys Acta Protein Struct Mol Enzymol. 1992;1121(1):183–8.

    Article  CAS  Google Scholar 

  24. Fabian H, Mantsch HH. Ribonuclease A revisited: infrared spectroscopic evidence for lack of native-like secondary structures in the thermally denatured state. Biochemistry. 1995;34(41):13651–5.

    Article  CAS  Google Scholar 

  25. Martínez A, Haavik J, Flatmark T, Arrondo JLR, Muga A. Conformational properties and stability of tyrosine hydroxylase studied by infrared spectroscopy EFFECT OF IRON/CATECHOLAMINE BINDING AND PHOSPHORYLATION. J Biol Chem. 1996;271(33):19737–42.

    Article  Google Scholar 

  26. Lee TH, Cheng WT, Lin SY. Thermal stability and conformational structure of salmon calcitonin in the solid and liquid states. Biopolymers. 2010;93(2):200–7.

    Article  CAS  Google Scholar 

  27. Seshadri S, Khurana R, Fink AL. Fourier transform infrared spectroscopy in analysis of protein deposits. Methods Enzymol. 1999;309:559–76.

    Article  CAS  Google Scholar 

  28. Aiba H, Fujimoto S, Ozaki N. Molecular cloning and nucleotide sequencing of the gene for E. coli cAMP receptor protein. Nucleic Acids Res. 1982;10(4):1345–61.

    Article  CAS  Google Scholar 

  29. Luthra S, Kalonia DS, Pikal MJ. Effect of hydration on the secondary structure of lyophilized proteins as measured by Fourier transform infrared (FTIR) spectroscopy. J Pharm Sci. 2007;96(11):2910–21.

    Article  CAS  Google Scholar 

  30. Dong A, Caughey WS. Infrared methods for study of hemoglobin reactions and structures. Methods Enzymol. 1994;232:139–75.

    Article  CAS  Google Scholar 

  31. Dong A, Huang P, Caughey WS. Protein secondary structures in water from second-derivative amide I infrared spectra. Biochemistry. 1990;29(13):3303–8.

    Article  CAS  Google Scholar 

  32. Savitzky A, Golay MJ. Smoothing and differentiation of data by simplified least squares procedures. Anal Chem. 1964;36(8):1627–39.

    Article  CAS  Google Scholar 

  33. Dong A, Prestrelski SJ, Allison SD, Carpenter JF. Infrared spectroscopic studies of lyophilization-and temperature-induced protein aggregation. J Pharm Sci. 1995;84(4):415–24.

    Article  CAS  Google Scholar 

  34. Levitt M, Greer J. Automatic identification of secondary structure in globular proteins. J Mol Biol. 1977;114(2):181–239.

    Article  CAS  Google Scholar 

  35. Richardson JS. The anatomy and taxonomy of protein structure. Adv Protein Chem. 1981;34:167–339.

    Article  CAS  Google Scholar 

  36. Jackson M, Mantsch HH. The use and misuse of FTIR spectroscopy in the determination of protein structure. Crit Rev Biochem Mol. 1995;30(2):95–120.

    Article  CAS  Google Scholar 

  37. Uversky VN, Permiakov EAe. Methods in protein structure and stability analysis: luminescence spectroscopy and circular dichroism. Nova Publishers; 2007.

  38. Dong A, Jones LS, Kerwin BA, Krishnan S, Carpenter JF. Secondary structures of proteins adsorbed onto aluminum hydroxide: infrared spectroscopic analysis of proteins from low solution concentrations. Anal Biochem. 2006;351(2):282–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 31470786 and 21275032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaoning Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 510 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Zhang, X., Zhang, F. et al. Solid-film sampling method for the determination of protein secondary structure by Fourier transform infrared spectroscopy. Anal Bioanal Chem 409, 4459–4465 (2017). https://doi.org/10.1007/s00216-017-0390-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0390-y

Keywords

Navigation