Skip to main content

Advertisement

Log in

An “on-off-on” fluorescent probe for ascorbic acid based on Cu-ZnCdS quantum dots and α-MnO2 nanorods

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This work established a fluorescence approach for detecting ascorbic acid (AA) based on Cu-ZnCdS quantum dots (Cu-ZnCdS QDs) and α-MnO2 nanorods. Cu-ZnCdS QDs and α-MnO2 nanorods were characterized by high-resolution transmission electron microscopy (HRTEM), fluorescence spectroscopy, inductively coupled plasma optical emission spectroscopy (ICP-OES) and X-ray diffraction (XRD). In the presence of α-MnO2 nanorods, the fluorescence of Cu-ZnCdS QDs was greatly quenched through the inner filter effect (IFE). Subsequently, AA can trigger the decomposition of the α-MnO2 nanorods which can reduce α-MnO2 to Mn2+ and recover the fluorescence. Under optimal conditions, a linear relation was obtained over the range 5.02−401.77 μM with a 31.62 μM detection limit. Through applying the fluorescent sensing system for detecting AA, a satisfactory result is obtained with recoveries ranging from 89.23% to 110.99%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cobley JN, McHardy H, Morton JP, Nikolaidis MG, Close GL. Influence of vitamin C and vitamin E on redox signaling: Implications for exercise adaptations. Free Radical Bio Med. 2015;84:65–76.

    Article  CAS  Google Scholar 

  2. Hu G, Guo Y, Xue Q, Shao S. A highly selective amperometric sensor for ascorbic acid based on mesopore-rich active carbon-modified pyrolytic graphite electrode. Electrochim Acta. 2010;55(8):2799–804.

    Article  CAS  Google Scholar 

  3. Childs A, Jacobs C, Kaminski T, Halliwell B, Leeuwenburgh C. Supplementation with vitamin C and N-acetyl-cysteine increases oxidative stress in humans after an acute muscle injury induced by eccentric exercise. Free Radical Bio Med. 2001;31(6):745–53.

    Article  CAS  Google Scholar 

  4. Wu T, Guan Y, Ye J. Determination of flavonoids and ascorbic acid in grapefruit peel and juice by capillary electrophoresis with electrochemical detection. Food Chem. 2007;100(4):1573–9.

    Article  CAS  Google Scholar 

  5. Zhu Q, Dong D, Zheng X, Song H, Zhao X, Chen H, et al. Chemiluminescence determination of ascorbic acid using graphene oxide@copper-based metal-organic frameworks as a catalyst. RSC Adv. 2016;6(30):25047–55.

    Article  CAS  Google Scholar 

  6. Zhou C, Li S, Zhu W, Pang H, Ma H. A sensor of a polyoxometalate and Au–Pd alloy for simultaneously detection of dopamine and ascorbic acid. Electrochim Acta. 2013;113:454–63.

    Article  CAS  Google Scholar 

  7. Yu Z, Li H, Lu J, Zhang X, Liu N, Zhang X. Hydrothermal synthesis of Fe2O3/graphene nanocomposite for selective determination of ascorbic acid in the presence of uric acid. Electrochim Acta. 2015;158:264–70.

    Article  CAS  Google Scholar 

  8. Valente A, Sanches-Silva A, Albuquerque TG, Costa HS. Development of an orange juice in-house reference material and its application to guarantee the quality of vitamin C determination in fruits, juices and fruit pulps. Food Chem. 2014;154:71–7.

    Article  CAS  Google Scholar 

  9. Klimczak I, Gliszczyńska-Świgło A. Comparison of UPLC and HPLC methods for determination of vitamin C. Food Chem. 2015;175:100–5.

    Article  CAS  Google Scholar 

  10. Ortega Barrales P, Fernández de Córdova ML, Molina Dı́az A. Indirect determination of ascorbic acid by solid-phase spectrophotometry. Anal Chim Acta. 1998;360(1/3):143–52.

    Article  CAS  Google Scholar 

  11. Gazdik Z, Zitka O, Petrlova J, Adam V, Zehnalek J, Horna A, Reznicek V, Beklova M, Kizek R (2008) Determination of vitamin C (ascorbic acid) using high performance liquid chromatography coupled with electrochemical detection. Sensors 8(11)

  12. Liu Z, Wang Q, Mao L, Cai R. Highly sensitive spectrofluorimetric determination of ascorbic acid based on its enhancement effect on a mimetic enzyme-catalyzed reaction. Anal Chim Acta. 2000;413(1/2):167–73.

    Article  CAS  Google Scholar 

  13. Kong X, Gong Y, Fan Z. The sensitive turn-on fluorescence detection of ascorbic acid based on iron(III)-modulated nitrogen-doped graphene quantum dots. J Fluoresc. 2016;26(5):1755–62.

    Article  CAS  Google Scholar 

  14. Dzagli MM, Canpean V, Iosin M, Mohou MA, Astilean S. Study of the interaction between CdSe/ZnS core-shell quantum dots and bovine serum albumin by spectroscopic techniques. J Photoch Photobio A. 2010;215(1):118–22.

    Article  CAS  Google Scholar 

  15. Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP. Semiconductor Nanocrystals as Fluorescent Biological Labels. Science. 1998;281(5385):2013.

    Article  CAS  Google Scholar 

  16. Stobiecka M, Chalupa A. Modulation of plasmon-enhanced resonance energy transfer to gold nanoparticles by protein survivin channeled-shell gating. J Phys Chem. 2015;B119(41):13227–35.

    Article  Google Scholar 

  17. Stobiecka M. Novel plasmonic field-enhanced nanoassay for trace detection of proteins. Biosens Bioelectron. 2014;55:379–85.

    Article  CAS  Google Scholar 

  18. Ma F, Sun M, Zhang K, Wang S. A ratiometric fluorescence sensor for highly selective and sensitive detection of mercuric ion. Sensor Actuat B - Chem. 2015;209:377–83.

    Article  CAS  Google Scholar 

  19. Rao H, Ge H, Lu Z, Liu W, Chen Z, Zhang Z, et al. Copper nanoclusters as an on-off-on fluorescent probe for ascorbic acid. Microchim Acta. 2016;183(5):1651–7.

    Article  CAS  Google Scholar 

  20. Lim KR, Ahn K-S, Lee W-Y. Detection of concanavalin A based on attenuated fluorescence resonance energy transfer between quantum dots and mannose-stabilized gold nanoparticles. Anal Methods. 2013;5(1):64–7.

    Article  CAS  Google Scholar 

  21. Bae W, Choi M-G, Hyeon C, Shin Y-K, Yoon T-Y. Real-time observation of multiple-protein complex formation with single-molecule FRET. J Am Chem Soc. 2013;135(28):10254–7.

    Article  CAS  Google Scholar 

  22. Wu P, He Y, Wang H-F, Yan X-P. Conjugation of glucose oxidase onto Mn-Doped ZnS quantum dots for phosphorescent sensing of glucose in biological fluids. Anal Chem. 2010;82(4):1427–33.

    Article  CAS  Google Scholar 

  23. Shiosaki S, Nobori T, Mori T, Toita R, Nakamura Y, Kim CW, et al. A protein kinase assay based on FRET between quantum dots and fluorescently-labeled peptides. Chem Commun. 2013;49(49):5592–4.

    Article  CAS  Google Scholar 

  24. Dong H, Gao W, Yan F, Ji H, Ju H. Fluorescence resonance energy transfer between quantum dots and graphene oxide for sensing biomolecules. Anal Chem. 2010;82(13):5511–7.

    Article  CAS  Google Scholar 

  25. Shamsipur M, Rajabi HR. Pure zinc sulfide quantum dot as highly selective luminescent probe for determination of hazardous cyanide ion. Mat Sci Eng C- Mater. 2014;36:139–45.

    Article  CAS  Google Scholar 

  26. Hemmateenejad B, Shamsipur M, Samari F, Rajabi HR. Study of the interaction between human serum albumin and Mn-doped ZnS quantum dots. J Iran Chem Soc. 2015;12(10):1729–38.

    Article  CAS  Google Scholar 

  27. Kaur M, Pandey OP, Sharma M, Sharma NN, Gaol FL, Akhtar J. Synthesis and characterization of Mn doped ZnCdS core shell nanostructures QDs using a chemical precipitation route. AIP Conf Proc. 2016;1724(1):020057.

    Article  Google Scholar 

  28. Wu P, Yan X-P. Doped quantum dots for chemo/biosensing and bioimaging. Chem Soc Rev. 2013;42(12):5489–521.

    Article  CAS  Google Scholar 

  29. Algar WR, Susumu K, Delehanty JB, Medintz IL. Semiconductor quantum dots in bioanalysis: crossing the Valley of Death. Anal Chem. 2011;83(23):8826–37.

    Article  CAS  Google Scholar 

  30. Cheng F, Zhao J, Song W, Li C, Ma H, Chen J, et al. Facile controlled synthesis of MnO2 nanostructures of novel shapes and their application in batteries. Inorg Chem. 2006;45(5):2038–44.

    Article  CAS  Google Scholar 

  31. Yang C, Deng W, Liu H, Ge S, Yan M. Turn-on fluorescence sensor for glutathione in aqueous solutions using carbon dots–MnO2 nanocomposites. Sensor Actuat B - Chem. 2015;216:286–92.

    Article  CAS  Google Scholar 

  32. Wang C, Zhai W, Wang Y, Yu P, Mao L. MnO2 nanosheets based fluorescent sensing platform with organic dyes as a probe with excellent analytical properties. Analyst. 2015;140(12):4021–9.

    Article  CAS  Google Scholar 

  33. Lin S, Cheng H, Ouyang Q, Wei H. Deciphering the quenching mechanism of 2D MnO2 nanosheets towards Au nanocluster fluorescence to design effective glutathione biosensors. Anal Methods. 2016;8(19):3935–40.

    Article  Google Scholar 

  34. Deng R, Xie X, Vendrell M, Chang Y-T, Liu X. Intracellular glutathione detection using MnO2-nanosheet-modified upconversion nanoparticles. J Am Chem Soc. 2011;133(50):20168–71.

    Article  CAS  Google Scholar 

  35. Wang H-B, Chen Y, Li Y, Liu Y-M. A sensitive fluorescence sensor for glutathione detection based on MnO2 nanosheets-copper nanoclusters composites. RSC Adv. 2016;6(83):79526–32.

    Article  CAS  Google Scholar 

  36. Liu J, Chen Y, Wang W, Feng J, Liang M, Ma S, et al. “Switch-on” fluorescent sensing of ascorbic acid in food samples based on carbon quantum dots–MnO2 probe. J Agr Food Chem. 2016;64(1):371–80.

    Article  Google Scholar 

  37. Xu Y, Chen X, Chai R, Xing C, Li H, Yin X-B. A magnetic/fluorometric bimodal sensor based on a carbon dots-MnO2 platform for glutathione detection. Nanoscale. 2016;8(27):13414–21.

    Article  CAS  Google Scholar 

  38. Yan X, Song Y, Zhu C, Song J, Du D, Su X, et al. Graphene quantum dot–MnO2 nanosheet based optical sensing platform: a sensitive fluorescence “turn off–on” nanosensor for glutathione detection and intracellular imaging. ACS Appl Mater Interfaces. 2016;8(34):21990–6.

    Article  CAS  Google Scholar 

  39. Wu P, Xu C, Hou X, Xu J-J, Chen H-Y. Dual-emitting quantum dot nanohybrid for imaging of latent fingerprints: simultaneous identification of individuals and traffic light-type visualization of TNT. Chem Sci. 2015;6(8):4445–50.

    Article  CAS  Google Scholar 

  40. Hongen W, Zhouguang L, Dong Q, Yujie L, Wei Z. Single-crystal α-MnO 2 nanorods: synthesis and electrochemical properties. Nanotechnology. 2007;18(11):115616.

    Article  Google Scholar 

  41. Srivastava BB, Jana S, Pradhan N. Doping Cu in semiconductor nanocrystals: some old and some new physical insights. J Am Chem Soc. 2011;133(4):1007–15.

    Article  CAS  Google Scholar 

  42. Grandhi GK, Tomar R, Viswanatha R. Study of surface and bulk electronic structure of II–VI semiconductor nanocrystals using Cu as a nanosensor. ACS Nano. 2012;6(11):9751–63.

    Article  CAS  Google Scholar 

  43. Zhai W, Wang C, Yu P, Wang Y, Mao L. Single-layer MnO2 nanosheets suppressed fluorescence of 7-hydroxycoumarin: mechanistic study and application for sensitive sensing of ascorbic acid in vivo. Anal Chem. 2014;86(24):12206–13.

    Article  CAS  Google Scholar 

  44. Niu W-J, Shan D, Zhu R-H, Deng S-Y, Cosnier S, Zhang X-J. Dumbbell-shaped carbon quantum dots/AuNCs nanohybrid as an efficient ratiometric fluorescent probe for sensing cadmium (II) ions and l-ascorbic acid. Carbon. 2016;96:1034–42.

    Article  CAS  Google Scholar 

  45. Chen J, Ge J, Zhang L, Li Z, Li J, Sun Y, et al. Reduced graphene oxide nanosheets functionalized with poly(styrene sulfonate) as a peroxidase mimetic in a colorimetric assay for ascorbic acid. Microchim Acta. 2016;183(6):1847–53.

    Article  CAS  Google Scholar 

  46. Huang S, Qiu H, Zhu F, Lu S, Xiao Q. Graphene quantum dots as on-off-on fluorescent probes for chromium(VI) and ascorbic acid. Microchim Acta. 2015;182(9):1723–31.

    Article  CAS  Google Scholar 

  47. Wang L, Gong C, Shen Y, Ye W, Xu M, Song Y. A novel ratiometric electrochemical biosensor for sensitive detection of ascorbic acid. Sensors Actuat B - Chem. 2017;242:625–31.

    Article  CAS  Google Scholar 

  48. Li Y, Lin H, Peng H, Qi R, Luo C. A glassy carbon electrode modified with MoS2 nanosheets and poly(3,4-ethylenedioxythiophene) for simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid. Microchim Acta. 2016;183(9):2517–23.

    Article  CAS  Google Scholar 

  49. Xing L, Ma Z. A glassy carbon electrode modified with a nanocomposite consisting of MoS2 and reduced graphene oxide for electrochemical simultaneous determination of ascorbic acid, dopamine, and uric acid. Microchim Acta. 2016;183(1):257–63.

    Article  CAS  Google Scholar 

  50. Zhao J, Zhao L, Lan C, Zhao S. Graphene quantum dots as effective probes for label-free fluorescence detection of dopamine. Sensor Actuat B - Chem. 2016;223:246–51.

    Article  CAS  Google Scholar 

  51. Liu R, Yang R, Qu C, Mao H, Hu Y, Li J, et al. Synthesis of glycine-functionalized graphene quantum dots as highly sensitive and selective fluorescent sensor of ascorbic acid in human serum. Sensor Actuat B - Chem. 2017;241:644–51.

    Article  CAS  Google Scholar 

  52. Rong M, Lin L, Song X, Wang Y, Zhong Y, Yan J, et al. Fluorescence sensing of chromium (VI) and ascorbic acid using graphitic carbon nitride nanosheets as a fluorescent “switch”. Biosens Bioelectron. 2015;68:210–7.

    Article  CAS  Google Scholar 

  53. Jahan S, Mansoor F, Kanwal S. Polymers effects on synthesis of AuNPs, and Au/Ag nanoalloys: indirectly generated AuNPs and versatile sensing applications including anti-leukemic agent. Biosens Bioelectron. 2014;53:51–7.

    Article  CAS  Google Scholar 

  54. Zhu X, Zhao T, Nie Z, Liu Y, Yao S. Non-redox modulated fluorescence strategy for sensitive and selective ascorbic acid detection with highly photoluminescent nitrogen-doped carbon nanoparticles via solid-state synthesis. Anal Chem. 2015;87(16):8524–30.

    Article  CAS  Google Scholar 

  55. Liu J-J, Chen Z-T, Tang D-S, Wang Y-B, Kang L-T, Yao J-N. Graphene quantum dots-based fluorescent probe for turn-on sensing of ascorbic acid. Sensor Actuat B - Chem. 2015;212:214–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Two-Way Support Programs of Sichuan Agricultural University (project no.03570113), the Education Department of Sichuan Provincial, PR China (grant nos.13ZA0255, 16ZA0039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanying Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Hanbing Rao and Yao Gao contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, H., Gao, Y., Ge, H. et al. An “on-off-on” fluorescent probe for ascorbic acid based on Cu-ZnCdS quantum dots and α-MnO2 nanorods. Anal Bioanal Chem 409, 4517–4528 (2017). https://doi.org/10.1007/s00216-017-0389-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0389-4

Keywords

Navigation