Skip to main content
Log in

Multidimensional single-cell analysis based on fluorescence microscopy and automated image analysis

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A single-cell analytical technology was developed for evaluating fast-growing cultures of green algae. The main part of the single-cell analysis is an epifluorescence microscopy-based cytometric approach combined with an automated image analysis algorithm and a single-threshold discrimination procedure. The reliability of the technique in terms of object recognition, evaluating particle size, and determining chlorophyll was successfully proven via reference analyses. The microscopy technique was used to determine the size of single cells, the amount of chlorophyll, and the density of chlorophyll in a model algal culture (Acutodesmus o.). The algal cells showed unexpected heterogeneity in all single-cell parameters, and exhibited a high correlation between cell size and amount of chlorophyll but a very low correlation between cell size and chlorophyll density. For a given cell size, the cell-to-cell heterogeneity of the relative chlorophyll density showed a spread of 0.02–0.08. This points to large variations in the architecture and the physiological state of the photosynthetic apparatus in the cells. This complex situation should be considered in future systems biology approaches focusing on the relationships between biomass accumulation, photosynthetic activity, and central carbon metabolism.

Analysis of cell-to-cell heterogeneity obtained from microscopic images

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–e
Fig. 2a–d
Fig. 3a–d
Fig. 4
Fig. 5a–b
Fig. 6a–d

Similar content being viewed by others

References

  1. Weckwerth W. Green systems biology—from single genomes, proteomes and metabolomes to ecosystems research and biotechnology. J Proteome. 2011;75(1):284–305.

  2. Deshmukh R, Sonah H, Patil G, Chen W, Prince S, Mutava R, Vuong T, Valliyodan B, Nguyen HT. Integrating omic approaches for abiotic stress tolerance in soybean. Front Plant Sci. 2014;5:244.

    Article  Google Scholar 

  3. Amantonico A, Urban PL, Zenobi R. Analytical techniques for single-cell metabolomics: state of the art and trends. Anal Bioanal Chem. 2010;398(6):2493–504.

    Article  CAS  Google Scholar 

  4. Wang D, Bodovitz S. Single cell analysis: the new frontier in ‘omics’. Trends Biotechnol. 2010;28(6):281–90.

    Article  CAS  Google Scholar 

  5. Kovarik ML, Allbritton NL. Measuring enzyme activity in single cells. Trends Biotechnol. 2011;29(5):222–30.

    Article  CAS  Google Scholar 

  6. Fritzsch FSO, Dusny C, Frick O, Schmid A. Single-cell analysis in biotechnology, systems biology, and biocatalysis. Annu Rev Chem Biomol Eng. 2012;3:129–55.

  7. Brehm-Stecher BF, Johnson EA. Single-cell microbiology: tools, technologies, and applications. Microbiol Mol Biol Rev. 2004;68(3):538–59.

    Article  CAS  Google Scholar 

  8. Picot J, Guerin CL, Le Van Kim C, Boulanger CM. Flow cytometry: retrospective, fundamentals and recent instrumentation. Cytotechnology. 2012;64(2):109–30.

    Article  Google Scholar 

  9. Dubelaar GBJ, Jonker RR. Flow cytometry as a tool for the study of phytoplankton. Sci Mar. 2000;64(2):135–56.

    Article  Google Scholar 

  10. Shapiro HM. Microbial analysis at the single-cell level: tasks and techniques. J Microbiol Methods. 2000;42(1):3–16.

    Article  CAS  Google Scholar 

  11. Hashemi N, Erickson JS, Golden JP, Ligler FS. Optofluidic characterization of marine algae using a microflow cytometer. Biomicrofluidics. 2011;3:32009–320099.

  12. Jacquet S, Lennon J-F, Marie D, Vaulot D. Picoplankton population dynamics in coastal waters of the northwestern Mediterranean Sea. Limnol Oceanogr. 1998;43(8):1916–31.

  13. Vaulot D, Marie D. Diel variability of photosynthetic picoplankton in the equatorial Pacific. J Geophys Res Atmos. 1999;104(C2):3297–310.

    Article  CAS  Google Scholar 

  14. Jamers A, De Coen W. Effect assessment of the herbicide paraquat on a green alga using differential gene expression and biochemical biomarkers. Environ Toxicol Chem. 2010;29(4):893–901.

    Article  Google Scholar 

  15. Jamers A, Lenjou M, Deraedt P, Van Bockstaele D, Blust R, de Coen W. Flow cytometric analysis of the cadmium-exposed green alga Chlamydomonas reinhardtii (Chlorophyceae). Eur J Phycol. 2009;44(4):541–50.

    Article  CAS  Google Scholar 

  16. Prado R, Rioboo C, Herrero C, Suárez-Bregua P, Cid A. Flow cytometric analysis to evaluate physiological alterations in herbicide-exposed Chlamydomonas moewusii cells. Ecotoxicology. 2012;21(2):409–20.

  17. Garz A, Sandmann M, Rading M, Ramm S, Menzel R, Steup M. Cell-to-cell diversity in a synchronized Chlamydomonas culture as revealed by single-cell analyses. Biophys J. 2012;103:1078–86.

  18. Rading M, Sandmann M, Steup M, Chiarugi D, Valleriani A. Weak correlation of starch and volume in synchronized photosynthetic cells. Phys Rev E. 2015:91(1):012711.

  19. Sandmann M, Garz A, Menzel R. Physiological response of two different Chlamydomonas reinhardtii strains to light-dark rhythms. Botany. 2016;94(1):53–64.

    Article  CAS  Google Scholar 

  20. Hase E, Morimura Y, Tamiya H. Some data on the growth physiology of Chlorella studied by the technique of synchronous culture. Arch Biochem Biophys. 1957;69:149–65.

  21. Lichtenthaler HK, Buschmann C. Unit F4.3: Chlorophylls and carotenoids: measurement and characterization by UV-VIS. Curr Protocol Food Anal Chem. 2001;F:F4:F4.3

  22. Otsu N. A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern. 1979;9(1):62–6.

    Article  Google Scholar 

  23. Carpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang IH, Friman O, Guertin DA, Chang JH, Lindquist RA, Moffat JPG, Sabatini DM. CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 2006;7:R100.

    Article  Google Scholar 

  24. Collins TJ. ImageJ for microscopy. BioTechniques. 2007;43(1):25–30.

    Article  Google Scholar 

  25. Gonzalez R. Woods R. Digital image processing. 3rd ed. Upper Saddle River: Prentice Hall; 2007.

  26. Hoggar S. Mathematics of digital images: Cambridge: Cambridge University Press; 2006.

  27. Strasser RJ, Tsimilli-Michael M, Srivastava A. Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou GC, Govindjee, editors. Chlorophyll a fluorescence: a signature of photosynthesis. Advances in photosynthesis and respiration. Dordrecht: Kluwer Academic; 2004.

  28. Abomohra AE-F, El-Sheekh M, Hanelt D. Pilot cultivation of the chlorophyte microalga Scenedesmus obliquus as a promising feedstock for biofuel. Biomass Bioenergy. 2014;64:237–44.

    Article  CAS  Google Scholar 

  29. Merkus HG. Particle size measurements: fundamentals, practice, quality. 1st ed. Dordrecht: Springer; 2009.

  30. Hass R, Munzke D, Reich O. Inline-Partikelgrößenmesstechniken für Suspensionen und Emulsionen. Chem Ing Tech. 2010;82:477–90.

    Article  CAS  Google Scholar 

  31. Muzzey D, Oudenaarden A. Quantitative time-lapse fluorescence microscopy in single cells. Annu Rev Cell Dev Biol. 2009;25(1):301–27.

    Article  CAS  Google Scholar 

  32. Waters JC. Accuracy and precision in quantitative fluorescence microscopy. J Cell Biol. 2009;185(7):1135–48.

    Article  CAS  Google Scholar 

  33. Arce SH, Wu P-H, Tseng Y. Fast and accurate automated cell boundary determination for fluorescence microscopy. Sci Rep. 2013;3:2266.

    Article  Google Scholar 

  34. Yuan Y, Failmezger H, Rueda OM, Ali HR, Gräf S, Chin S-F, Schwarz RF, Curtis C, Dunning MJ, Bardwell H, Johnson N, Doyle S, Turashvili G, Provenzano E, Aparicio S, Caldas C, Markowetz F. Quantitative image analysis of cellular heterogeneity in breast tumors complements genomic profiling. Sci Transl Med. 2012;4(157):1–10.

    Article  CAS  Google Scholar 

  35. Beck AH, Sangoi AR, Leung S, Marinelli RJ, Nielsen TO, van de Vijver MJ, West RB, van de Rijn M, Koller D. Systematic analysis of breast cancer morphology uncovers stromal features associated with survival. Sci Transl Med. 2011;3(108):1–11.

    Article  Google Scholar 

  36. Bickle M. High-content screening: a new primary screening tool? IDrugs. 2008;11(11):822–6.

    CAS  Google Scholar 

  37. Thomas N. High-content screening: a decade of evolution. J Biomol Screen. 2009;15(1):1–9.

    Article  Google Scholar 

  38. Zhang B, Zerubia J, Olivo-Marin J-C. Gaussian approximations of fluorescence microscope point-spread function models. Appl Opt. 2007;46(10):1819–29.

    Article  Google Scholar 

  39. Nelle R, Tischner R, Harnischfeger G, Lorenzen H. Correlation between pigment systems and photosynthetic activity during the developmental cycle of Chlorella. Biochem Physiol Pflanzen. 1975;167:463–72.

  40. Levenko BA, Chemeris YK, Venediktov PS. Changes in the content of chlorophyll a spectral forms in synchronous culture and during nitrogen starvation of Chlorella. Biochem Physiol Pflanz. 1985;180(2):157–62.

Download references

Acknowledgements

We acknowledge the financial support of the German Federal Ministry of Food and Agriculture (BMEL) (grant 2814ERA03G) and the German Federal Ministry of Economics and Energy (BMWi) (CORNET AiF 129 EN). Additionally, the authors thank Ina Färber and Maja Eigner for maintaining the algal culture collection and for assisting with the experiments.

Author information

Authors and Affiliations

Authors

Contributions

M.S. and M.L. programmed the object recognition and the single-cell analysis algorithms. M.L. performed the cell cultivation and the analyses. F.S. carried out the reference pigment analysis. C.O.P. performed the reference analysis based on fluorescent beads and helped with the image analysis. M.S. and S.R. planned and supervised the experiments. M.S. wrote the manuscript. All authors participated in the study design and reviewed the manuscript.

Corresponding author

Correspondence to Michael Sandmann.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human or animals subjects.

Informed consent

Not applicable.

Electronic supplementary material

ESM 1

(PDF 347 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sandmann, M., Lippold, M., Saalfrank, F. et al. Multidimensional single-cell analysis based on fluorescence microscopy and automated image analysis. Anal Bioanal Chem 409, 4009–4019 (2017). https://doi.org/10.1007/s00216-017-0344-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0344-4

Keywords

Navigation