Skip to main content
Log in

Amperometric L-lysine enzyme electrodes based on carbon nanotube/redox polymer and graphene/carbon nanotube/redox polymer composites

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Highly sensitive L-lysine enzyme electrodes were constructed by using poly(vinylferrocene)-multiwalled carbon nanotubes-gelatine (PVF/MWCNTs-GEL) and poly(vinylferrocene)-multiwalled carbon nanotubes-gelatine-graphene (PVF/MWCNTs-GEL/GR) composites as sensing interfaces and their performances were evaluated. Lysine oxidase (LO) was immobilized onto the composite modified glassy carbon electrodes (GCE) by crosslinking using glutaraldehyde and bovine serum albumin. Effects of pH value, enzyme loading, applied potential, electrode composition, and interfering substances on the amperometric response of the enzyme electrodes were discussed. The analytical characteristics of the enzyme electrodes were also investigated. The linear range, detection limit, and sensitivity of the LO/PVF/MWCNTs-GEL/GCE were 9.9 × 10−7–7.0 × 10−4 M, 1.8 × 10−7 M (S/N = 3), and 13.51 μA mM−1 cm−2, respectively. PVF/MWCNTs-GEL/GR-based L-lysine enzyme electrode showed a short response time (<5 s) and a linear detection range from 9.9 × 10−7 to 7.0 × 10−4 M with good sensitivity of 17.8 μA mM−1 cm−2 and a low detection limit of 9.2 × 10−8 M. The PVF/MWCNTs-GEL/GR composite-based L-lysine enzyme electrode exhibited about 1.3-fold higher sensitivity than its MWCNTs-based counterpart and its detection limit was superior to the MWCNTs-based one. In addition, enzyme electrodes were successfully applied to determine L-lysine in pharmaceutical sample and cheese.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Guerrieri A, Cataldi TR, Ciriello R. The kinetic and analytical behaviours of an L-lysine amperometric biosensor based on lysine oxidase immobilised onto a platinum electrode by co-crosslinking. Sensors Actuators B Chem. 2007;126(2):424–30.

    Article  CAS  Google Scholar 

  2. Bóka B, Korózs M, Nánási M, Adányi N. Novel amperometric tri‐enzyme biosensor for lysine determination in pharmaceutical products and food samples. Electroanalysis. 2015;27(3):817–24.

    Article  Google Scholar 

  3. Ronkainen NJ, Halsall HB, Heineman WR. Electrochemical biosensors. Chem Soc Rev. 2010;39(5):1747–63.

    Article  CAS  Google Scholar 

  4. Erden PE, Kaçar C, Öztürk F, Kılıç E. Amperometric uric acid biosensor based on poly (vinylferrocene)-gelatin-carboxylated multiwalled carbon nanotube modified glassy carbon electrode. Talanta. 2015;134:488–95.

    Article  CAS  Google Scholar 

  5. Meng L, Xia Y, Liu W, Zhang L, Zou P, Zhang Y. Hydrogen microexplosion synthesis of platinum nanoparticles/nitrogen doped graphene nanoscrolls as new amperometric glucose biosensor. Electrochim Acta. 2015;152:330–7.

    Article  CAS  Google Scholar 

  6. Shao Y, Wang J, Wu H, Liu J, Aksay IA, Lin Y. Graphene based electrochemical sensors and biosensors: a review. Electroanalysis. 2010;22(10):1027–36.

    Article  CAS  Google Scholar 

  7. Yang W, Ratinac KR, Ringer SP, Thordarson P, Gooding JJ, Braet F. Carbon nanomaterials in biosensors: should you use nanotubes or graphene? Angew Chem Int Ed. 2010;49(12):2114–38.

    Article  CAS  Google Scholar 

  8. Dalkiran B, Kacar C, Erden PE, Kilic E. Amperometric xanthine biosensors based on chitosan-Co3O4-multiwall carbon nanotube modified glassy carbon electrode. Sensors Actuators B Chem. 2014;200:83–91.

    Article  CAS  Google Scholar 

  9. Singh C, Srivastava S, Ali MA, Gupta TK, Sumana G, Srivastava A, et al. Carboxylated multiwalled carbon nanotubes based biosensor for aflatoxin detection. Sensors Actuators B Chem. 2013;185:258–64.

    Article  CAS  Google Scholar 

  10. Devasenathipathy R, Mani V, Chen SM, Huang ST, Huang TT, Lin CM, et al. Glucose biosensor based on glucose oxidase immobilized at gold nanoparticles decorated graphene-carbon nanotubes. Enzyme Microb Technol. 2015;78:40–5.

    Article  CAS  Google Scholar 

  11. Mani V, Dinesh B, Chen SM, Saraswathi R. Direct electrochemistry of myoglobin at reduced graphene oxide-multiwalled carbon nanotubes-platinum nanoparticles nanocomposite and biosensing towards hydrogen peroxide and nitrite. Biosens Bioelectron. 2014;53:420–7.

    Article  CAS  Google Scholar 

  12. Palanisamy S, Cheemalapati S, Chen SM. Amperometric glucose biosensor based on glucose oxidase dispersed in multiwalled carbon nanotubes/graphene oxide hybrid biocomposite. Mater Sci Eng C. 2014;34:207–13.

    Article  CAS  Google Scholar 

  13. Yu Y, Chen Z, He S, Zhang B, Li X, Yao M. Direct electron transfer of glucose oxidase and biosensing for glucose based on PDDA-capped gold nanoparticle modified graphene/multi-walled carbon nanotubes electrode. Biosens Bioelectron. 2014;52:147–52.

    Article  CAS  Google Scholar 

  14. Ateş M. A review study of (bio)sensor systems based on conducting polymers. Mater Sci Eng C. 2013;33(4):1853–9.

    Article  Google Scholar 

  15. Ahuja T, Mir IA, Kumar D. Biomolecular immobilization on conducting polymers for biosensing applications. Biomaterials. 2007;28(5):791–805.

    Article  CAS  Google Scholar 

  16. Malhotra BD, Chaubey A, Singh SP. Prospects of conducting polymers in biosensors. Anal Chim Acta. 2006;578(1):59–74.

    Article  CAS  Google Scholar 

  17. Hou KY, Rehman A, Zeng X. Study of ionic liquid immobilization on polyvinyl ferrocene substrates for gas sensor arrays. Langmuir. 2011;27(8):5136–46.

    Article  CAS  Google Scholar 

  18. Kuralay F, Özyörük H, Yıldız A. Inhibitive determination of Hg2+ ion by an amperometric urea biosensor using poly (vinylferrocenium) film. Enzym Microb Technol. 2007;40(5):1156–9.

    Article  CAS  Google Scholar 

  19. Türkmen E, Baş SZ, Gülce H, Yıldız S. Glucose biosensor based on immobilization of glucose oxidase in electropolymerized poly (o-phenylenediamine) film on platinum nanoparticles-polyvinylferrocenium modified electrode. Electrochim Acta. 2014;123:93–102.

    Article  Google Scholar 

  20. Özer BC, Özyörük H, Çelebi SS, Yıldız A. Amperometric enzyme electrode for free cholesterol determination prepared with cholesterol oxidase immobilized in poly (vinylferrocenium) film. Enzym Microb Technol. 2007;40(2):262–5.

    Article  Google Scholar 

  21. Erden PE, Pekyardιmcι Ş, Kιlιç E, Arslan F. An amperometric enzyme electrode for creatine determination prepared by the immobilization of creatinase and sarcosine oxidase in poly (vinylferrocenium). Artif Cells Blood Substit Biotechnol. 2006;34(2):223–39.

    Article  CAS  Google Scholar 

  22. Gökdoğan Şahin Ö, Gülce H, Gülce A. Polyvinylferrocenium based platinum electrodeposited amperometric biosensors for lysine detection. J Electroanal Chem. 2013;690:1–7.

    Article  Google Scholar 

  23. Erden PE, Pekyardımcı Ş, Kılıç E. Amperometric enzyme electrodes for xanthine determination with different mediators. Acta Chim Slov. 2012;59:824–32.

    CAS  Google Scholar 

  24. Bard AJ, Faulkner LR. Electrochemical methods: fundamentals and applications. 2nd ed. New York: Wiley; 2001.

    Google Scholar 

  25. Randviir EP, Banks CE. Electrochemical impedance spectroscopy: an overview of bioanalytical applications. Anal Methods. 2013;5(5):1098–115.

    Article  CAS  Google Scholar 

  26. Ahmad R, Tripathy N, Jang NK, Khang G, Hahn YB. Fabrication of highly sensitive uric acid biosensor based on directly grown ZnO nanosheets on electrode surface. Sensors Actuators B Chem. 2015;206:146–51.

    Article  CAS  Google Scholar 

  27. Numnuam A, Thavarungkul P, Kanatharana P. An amperometric uric acid biosensor based on chitosan-carbon nanotubes electrospun nanofiber on silver nanoparticles. Anal Bioanal Chem. 2014;406:3763–72.

    Article  CAS  Google Scholar 

  28. Guerrieri A, Ciriello R, Cataldi TRI. A novel amperometric biosensor based on a co-crosslinked L-lysine-α-oxidase/overoxidized polypyrrole bilayer for the highly selective determination of L-lysine. Anal Chim Acta. 2013;795:52–9.

    Article  CAS  Google Scholar 

  29. Chauhan N, Singh A, Narang J, Dahiya S, Pundir CS. Development of amperometric lysine biosensors based on Au nanoparticles/multiwalled carbon nanotubes/polymers modified Au electrodes. Analyst. 2012;137:5113–22.

    Article  CAS  Google Scholar 

  30. Chauhan N, Narang J, Sunny, Pundir CS. Immobilization of lysine oxidase on a gold–platinum nanoparticles modified Au electrode for detection of lysine. Enzym Microb Technol. 2013;52:265–71.

    Article  CAS  Google Scholar 

  31. Narang J, Jain U, Malhotra N, Singh S, Chauhan N. Development of lysine biosensor based on core shell magnetic nanoparticle and multiwalled carbon nanotube composite. Adv Mater Lett. 2015;6:407–13.

    Article  CAS  Google Scholar 

  32. Mell LD, Maloy JT. Model for the amperometric enzyme electrode obtained through digital simulation and applied to the immobilized glucose oxidase system. Anal Chem. 1975;47(2):299–307.

    Article  CAS  Google Scholar 

  33. Ivanauskas F, Kaunietis I. Apparent Michaelis constant of the enzyme modified porous electrode. J Math Chem. 2008;43(4):1516–26.

    Article  CAS  Google Scholar 

  34. Katauskis P, Ivanauskas F, Laukevičius S. Calculation of the apparent Michaelis constant for biosensors using reaction–diffusion equations. Lietuvos Matematikos Rinkinys. Proc Lith Math Soc Ser A. 2014;55:1–6.

    Google Scholar 

  35. Zou Y, Xiang C, Sun LX, Xu F. Glucose biosensor based on electrodeposition of platinum nanoparticles onto carbon nanotubes and immobilizing enzyme with chitosan-SiO2 sol–gel. Biosens Bioelectron. 2008;23(7):1010–6.

    Article  CAS  Google Scholar 

  36. Zhang Q, Xu G, Gong L, Dai H, Zhang S, Li Y, et al. An enzyme-assisted electrochemiluminescent biosensor developed on order mesoporous carbons substrate for ultrasensitive glyphosate sensing. Electrochim Acta. 2015;186:624–30.

    Article  CAS  Google Scholar 

  37. Karalemas ID, Georgiou CA, Papastathopoulos DS. Construction of a L-lysine biosensor by immobilizing lysine oxidase on a gold-poly(ophenylenediamine) electrode. Talanta. 2000;53(2):391–402.

    Article  CAS  Google Scholar 

  38. Kusakabe H, Kodama K, Kuninaka A, Yoshino H, Misono H, Soda K. A new antitumor enzyme, L-lysine alpha-oxidase from Trichoderma viride. Purification and enzymological properties. J Biol Chem. 1980;255(3):976–81.

    CAS  Google Scholar 

  39. Siegler K, Weber B, Weber E, Tonder K, Klingner E, Riechert F. A lysine sensor for process control. J Chem Technol Biotechnol. 1994;59(3):279–87.

    Article  CAS  Google Scholar 

  40. Saurina J, Hernández-Cassou S, Fàbregas E, Alegret S. Potentiometric biosensor for lysine analysis based on a chemically immobilized lysine oxidase membrane. Anal Chim Acta. 1998;371(1):49–56.

    Article  CAS  Google Scholar 

  41. Simonian AL, Badalian IE, Berezov TT, Smirnova IP, Khaduev SH. Flow-injection amperometric biosensor based on immobilized L-lysine-α-oxidase for L-lysine determination. Anal Lett. 1994;27(15):2849–60.

    Article  CAS  Google Scholar 

  42. Olschewski H, Erlenkötter A, Zaborosch C, Chemnitius GC. Screen-printed enzyme sensors for L-lysine determination. Enzyme Microb Technol. 2000;26(7):537–43.

    Article  CAS  Google Scholar 

  43. Yarar S, Karakuş E. A novel potentiometric biosensor for determination of L-lysine in commercial pharmaceutical L-lysine tablet and capsule. Artif Cells Nanomed Biotechnol. 2016;44(2):485–90.

    Article  CAS  Google Scholar 

  44. Fei S, Chen J, Yao S, Deng G, He D, Kuang Y. Electrochemical behavior of L-cysteine and its detection at carbon nanotube electrode modified with platinum. Anal Biochem. 2005;339:29–35.

    Article  CAS  Google Scholar 

  45. Boubellouta T, Dufour É. Cheese-matrix characteristics during heating and cheese melting temperature prediction by synchronous fluorescence and mid-infrared spectroscopies. Food Bioprocess Tech. 2012;5(1):273–84.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support of Ankara University Research Fund (Project No: 14L0430005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pınar Esra Erden.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 101 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaçar, C., Erden, P.E. & Kılıç, E. Amperometric L-lysine enzyme electrodes based on carbon nanotube/redox polymer and graphene/carbon nanotube/redox polymer composites. Anal Bioanal Chem 409, 2873–2883 (2017). https://doi.org/10.1007/s00216-017-0232-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0232-y

Keywords

Navigation