Skip to main content
Log in

Use of an informed search space maximizes confidence of site-specific assignment of glycoprotein glycosylation

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In order to interpret glycopeptide tandem mass spectra, it is necessary to estimate the theoretical glycan compositions and peptide sequences, known as the search space. The simplest way to do this is to build a naïve search space from sets of glycan compositions from public databases and to assume that the target glycoprotein is pure. Often, however, purified glycoproteins contain co-purified glycoprotein contaminants that have the potential to confound assignment of tandem mass spectra based on naïve assumptions. In addition, there is increasing need to characterize glycopeptides from complex biological mixtures. Fortunately, liquid chromatography-mass spectrometry (LC-MS) methods for glycomics and proteomics are now mature and accessible. We demonstrate the value of using an informed search space built from measured glycomes and proteomes to define the search space for interpretation of glycoproteomics data. We show this using α-1-acid glycoprotein (AGP) mixed into a set of increasingly complex matrices. As the mixture complexity increases, the naïve search space balloons and the ability to assign glycopeptides with acceptable confidence diminishes. In addition, it is not possible to identify glycopeptides not foreseen as part of the naïve search space. A search space built from released glycan glycomics and proteomics data is smaller than its naïve counterpart while including the full range of proteins detected in the mixture. This maximizes the ability to assign glycopeptide tandem mass spectra with confidence. As the mixture complexity increases, the number of tandem mass spectra per glycopeptide precursor ion decreases, resulting in lower overall scores and reduced depth of coverage for the target glycoprotein. We suggest use of α-1-acid glycoprotein as a standard to gauge effectiveness of analytical methods and bioinformatics search parameters for glycoproteomics studies.

Assignment of site specific glycosylation from LC-tandemMS data

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Leymarie N, Griffin PJ, Jonscher K, Kolarich D, Orlando R, McComb M, Zaia J, Aguilan J, Alley WR, Altmann F, Ball LE, Basumallick L, Bazemore-Walker CR, Behnken H, Blank MA, Brown KJ, Bunz S-C, Cairo CW, Cipollo JF, Daneshfar R, Desaire H, Drake RR, Go EP, Goldman R, Gruber C, Halim A, Hathout Y, Hensbergen PJ, Horn DM, Hurum D, Jabs W, Larson G, Ly M, Mann BF, Marx K, Mechref Y, Meyer B, Möginger U, Neusüss C, Nilsson J, Novotny MV, Nyalwidhe JO, Packer NH, Pompach P, Reiz B, Resemann A, Rohrer JS, Ruthenbeck A, Sanda M, Schulz JM, Schweiger-Hufnagel U, Sihlbom C, Song E, Staples GO, Suckau D, Tang H, Thaysen-Andersen M, Viner RI, An Y, Valmu L, Wada Y, Watson M, Windwarder M, Whittal R, Wuhrer M, Zhu Y, Zou C. Interlaboratory study on differential analysis of protein glycosylation by mass spectrometry: the ABRF glycoprotein research multi-institutional study 2012. Mol Cell Proteomics. 2013. doi: 10.1074/mcp.M113.030643

  2. Desaire H, Hua D. When can glycopeptides be assigned based solely on high-resolution mass spectrometry data? Int J Mass Spectrom. 2009;287:21–6. doi:10.1016/j.ijms.2008.12.001.

    Article  CAS  Google Scholar 

  3. Mayampurath AM, Wu Y, Segu ZM, Mechref Y, Tang H. Improving confidence in detection and characterization of protein N-glycosylation sites and microheterogeneity. Rapid Commun Mass Spectrom. 2011;25:2007–19. doi:10.1002/rcm.5059.

    Article  CAS  Google Scholar 

  4. Wu Y, Mechref Y, Klouckova I, Mayampurath A, Novotny MV, Tang H. Mapping site-specific protein N-glycosylations through liquid chromatography/mass spectrometry and targeted tandem mass spectrometry. Rapid Commun Mass Spectrom. 2010;24:965–72. doi:10.1002/rcm.4474.

    Article  CAS  Google Scholar 

  5. Wang WT, LeDonne NC, Ackerman B, Sweeley CC. Structural characterization of oligosaccharides by high-performance liquid chromatography, fast-atom bombardment-mass spectrometry, and exoglycosidase digestion. Anal Biochem. 1984;141:366–81. doi:10.1016/0003-2697(84)90057-5.

    Article  CAS  Google Scholar 

  6. Hu H, Khatri K, Klein J, Leymarie N, Zaia J. A review of methods for interpretation of glycopeptide tandem mass spectral data. Glycoconj J. 2015; 1–12. doi: 10.1007/s10719-015-9633-3

  7. Dallas DC, Martin WF, Hua S, German JB. Automated glycopeptide analysis—review of current state and future directions. Brief Bioinform. 2013;14:361–74. doi:10.1093/bib/bbs045.

    Article  CAS  Google Scholar 

  8. Hu H, Khatri K, Zaia J. Algorithms and design strategies towards automated glycoproteomics analysis. Mass Spectrom Rev n/a-n/a. 2016. doi: 10.1002/mas.21487

  9. Wuhrer M, Deelder AM, van der Burgt YEM. Mass spectrometric glycan rearrangements. Mass Spectrom Rev. 2011;30:664–80. doi:10.1002/mas.20337.

    Article  CAS  Google Scholar 

  10. Joenväärä S, Ritamo I, Peltoniemi H, Renkonen R. N-Glycoproteomics—an automated workflow approach. Glycobiology. 2008;18:339–49. doi:10.1093/glycob/cwn013.

    Article  Google Scholar 

  11. Wu S-W, Liang S-Y, Pu T-H, Chang F-Y, Khoo K-H. Sweet-Heart—an integrated suite of enabling computational tools for automated MS2/MS3 sequencing and identification of glycopeptides. J Proteomics. 2013;84:1–16. doi:10.1016/j.jprot.2013.03.026.

    Article  CAS  Google Scholar 

  12. Lynn K-S, Chen C-C, Lih TM, Cheng C-W, Su W-C, Chang C-H, Cheng C-Y, Hsu W-L, Chen Y-J, Sung T-Y. MAGIC: an automated N-linked glycoprotein identification tool using a Y1-ion pattern matching algorithm and in silico MS2 approach. Anal Chem. 2015. doi: 10.1021/ac5044829

  13. Strum JS, Nwosu CC, Hua S, Kronewitter SR, Seipert RR, Bachelor RJ, et al. Automated assignments of N- and O-site specific glycosylation with extensive glycan heterogeneity of glycoprotein mixtures. Anal Chem. 2013;85:5666–75. doi:10.1021/ac4006556.

    Article  CAS  Google Scholar 

  14. An Y, Cipollo JF. An unbiased approach for analysis of protein glycosylation and application to influenza vaccine hemagglutinin. Anal Biochem. 2011;415:67–80. doi:10.1016/j.ab.2011.04.018.

    Article  CAS  Google Scholar 

  15. Khatri K, Staples GO, Leymarie N, Leon DR, Turiák L, Huang Y, et al. Confident assignment of site-specific glycosylation in complex glycoproteins in a single step. J Proteome Res. 2014;13:4347–55. doi:10.1021/pr500506z.

    Article  CAS  Google Scholar 

  16. He L, Xin L, Shan B, Lajoie GA, Ma B. GlycoMaster DB: software to assist the automated identification of N-linked glycopeptides by tandem mass spectrometry. J Proteome Res. 2014;13:3881–95. doi:10.1021/pr401115y.

    Article  CAS  Google Scholar 

  17. Håkansson K, Cooper HJ, Emmett MR, Costello CE, Marshall AG, Nilsson CL. Electron capture dissociation and infrared multiphoton dissociation MS/MS of an N-glycosylated tryptic peptide to yield complementary sequence information. Anal Chem. 2001;73:4530–6. doi:10.1021/ac0103470.

    Article  Google Scholar 

  18. Mechref Y. Use of CID/ETD mass spectrometry to analyze glycopeptides. Curr Protoc Protein Sci Editor Board John E Coligan Al 0 12:Unit-12.1111. 2012. doi: 10.1002/0471140864.ps1211s68

  19. Syka JEP, Coon JJ, Schroeder MJ, Shabanowitz J, Hunt DF. Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc Natl Acad Sci U S A. 2004;101:9528–33. doi:10.1073/pnas.0402700101.

    Article  CAS  Google Scholar 

  20. Viner RI, Zhang T, Second T, Zabrouskov V. Quantification of post-translationally modified peptides of bovine α-crystallin using tandem mass tags and electron transfer dissociation. J Proteomics. 2009;72:874–85. doi:10.1016/j.jprot.2009.02.005.

    Article  CAS  Google Scholar 

  21. Scott NE, Parker BL, Connolly AM, Paulech J, Edwards AVG, Crossett B, et al. Simultaneous glycan-peptide characterization using hydrophilic interaction chromatography and parallel fragmentation by CID, higher energy collisional dissociation, and electron transfer dissociation MS applied to the N-linked glycoproteome of Campylobacter jejuni. Mol Cell Proteomics MCP. 2011;10:M000031–MCP201. doi:10.1074/mcp.M000031-MCP201.

    Article  Google Scholar 

  22. Chalkley RJ, Thalhammer A, Schoepfer R, Burlingame AL. Identification of protein O-GlcNAcylation sites using electron transfer dissociation mass spectrometry on native peptides. Proc Natl Acad Sci U S A. 2009;106:8894–9. doi:10.1073/pnas.0900288106.

    Article  CAS  Google Scholar 

  23. Catalina MI, Koeleman CAM, Deelder AM, Wuhrer M. Electron transfer dissociation of N-glycopeptides: loss of the entire N-glycosylated asparagine side chain. Rapid Commun Mass Spectrom RCM. 2007;21:1053–61. doi:10.1002/rcm.2929.

    Article  CAS  Google Scholar 

  24. Zhao P, Viner R, Teo CF, Boons G-J, Horn D, Wells L. Combining high-energy c-trap dissociation and electron transfer dissociation for protein O-GlcNAc modification site assignment. J Proteome Res. 2011;10:4088–104. doi:10.1021/pr2002726.

    Article  CAS  Google Scholar 

  25. Anderson NL, Anderson NG. The human plasma proteome history, character, and diagnostic prospects. Mol Cell Proteomics. 2002;1:845–67. doi:10.1074/mcp.R200007-MCP200.

    Article  CAS  Google Scholar 

  26. Echan LA, Tang H-Y, Ali-Khan N, Lee K, Speicher DW. Depletion of multiple high-abundance proteins improves protein profiling capacities of human serum and plasma. PROTEOMICS. 2005;5:3292–303. doi:10.1002/pmic.200401228.

    Article  CAS  Google Scholar 

  27. Zhang A, Sun H, Yan G, Han Y, Wang X. Serum proteomics in biomedical research: a systematic review. Appl Biochem Biotechnol. 2013;170:774–86. doi:10.1007/s12010-013-0238-7.

    Article  CAS  Google Scholar 

  28. Khatri K, Klein JA, White MR, Grant OC, Leymarie N, Woods RJ, Hartshorn KL, Zaia J. Integrated omics and computational glycobiology reveal structural basis for influenza A virus glycan microheterogeneity and host interactions. Mol Cell Proteomics mcp.M116.058016. 2016. doi: 10.1074/mcp.M116.058016

  29. Staples GO, Naimy H, Yin H, Kileen K, Kraiczek K, Costello CE, et al. Improved hydrophilic interaction chromatography LC/MS of heparinoids using a chip with postcolumn makeup flow. Anal Chem. 2009;82:516–22. doi:10.1021/ac901706f.

    Article  Google Scholar 

  30. Zhang J, Xin L, Shan B, Chen W, Xie M, Yuen D, et al. PEAKS DB: de novo sequencing assisted database search for sensitive and accurate peptide identification. Mol Cell Proteomics MCP. 2012;11:M111.010587. doi:10.1074/mcp.M111.010587.

    Article  Google Scholar 

  31. Creasy DM, Cottrell JS. Unimod: protein modifications for mass spectrometry. Proteomics. 2004;4:1534–6. doi:10.1002/pmic.200300744.

    Article  CAS  Google Scholar 

  32. Horn DM, Zubarev RA, McLafferty FW. Automated reduction and interpretation of high resolution electrospray mass spectra of large molecules. J Am Soc Mass Spectrom. 2000;11:320–32. doi:10.1016/S1044-0305(99)00157-9.

    Article  CAS  Google Scholar 

  33. Jaitly N, Mayampurath A, Littlefield K, Adkins JN, Anderson GA, Smith RD. Decon2LS: an open-source software package for automated processing and visualization of high resolution mass spectrometry data. BMC Bioinformatics. 2009;10:87. doi:10.1186/1471-2105-10-87.

    Article  Google Scholar 

  34. Maxwell E, Tan Y, Tan Y, Hu H, Benson G, Aizikov K, et al. GlycReSoft: a software package for automated recognition of glycans from LC/MS data. PLoS One. 2012;7:e45474. doi:10.1371/journal.pone.0045474.

    Article  CAS  Google Scholar 

  35. Käll L, Storey JD, MacCoss MJ, Noble WS. Assigning significance to peptides identified by tandem mass spectrometry using decoy databases. J Proteome Res. 2008;7:29–34. doi:10.1021/pr700600n.

    Article  Google Scholar 

  36. Eng JK, McCormack AL, Yates JR. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom. 1994;5:976–89. doi:10.1016/1044-0305(94)80016-2.

    Article  CAS  Google Scholar 

  37. Creasy DM, Cottrell JS. Error tolerant searching of uninterpreted tandem mass spectrometry data. Proteomics. 2002;2:1426–34. doi:10.1002/1615-9861(200210)2:10<1426::AID-PROT1426>3.0.CO;2-5.

    Article  CAS  Google Scholar 

  38. Mann M, Wilm M. Error-tolerant identification of peptides in sequence databases by peptide sequence tags. Anal Chem. 1994;66:4390–9.

    Article  CAS  Google Scholar 

  39. Sunyaev S, Liska AJ, Golod A, Shevchenko A, Shevchenko A. MultiTag: multiple error-tolerant sequence tag search for the sequence-similarity identification of proteins by mass spectrometry. Anal Chem. 2003;75:1307–15. doi:10.1021/ac026199a.

    Article  CAS  Google Scholar 

  40. Treuheit MJ, Costello CE, Halsall HB. Analysis of the five glycosylation sites of human alpha 1-acid glycoprotein. Biochem J. 1992;283:105–12.

    Article  CAS  Google Scholar 

  41. Nishi K, Ono T, Nakamura T, Fukunaga N, Izumi M, Watanabe H, et al. Structural insights into differences in drug-binding selectivity between two forms of human alpha1-acid glycoprotein genetic variants, the A and F1*S forms. J Biol Chem. 2011;286:14427–34. doi:10.1074/jbc.M110.208926.

    Article  CAS  Google Scholar 

  42. Rathore AS, Winkle H. Quality by design for biopharmaceuticals. Nat Biotechnol. 2009;27:26–34. doi:10.1038/nbt0109-26.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding was provided from NIH grants P41GM105603 and R21CA177476. Thermo-Fisher Scientific provided access to the Q-Exactive Plus mass spectrometer used in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Zaia.

Ethics declarations

Conflict of interests

The authors have no conflicts of interest.

Additional information

Published in the topical collection Glycomics, Glycoproteomics and Allied Topics with guest editors Yehia Mechref and David Muddiman.

Kshitij Khatri and Joshua A. Klein contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1129 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khatri, K., Klein, J.A. & Zaia, J. Use of an informed search space maximizes confidence of site-specific assignment of glycoprotein glycosylation. Anal Bioanal Chem 409, 607–618 (2017). https://doi.org/10.1007/s00216-016-9970-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9970-5

Keywords

Navigation