Skip to main content
Log in

Guilty by dissociation—development of gas chromatography–mass spectrometry (GC-MS) and other rapid screening methods for the analysis of 13 diphenidine-derived new psychoactive substances (NPSs)

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The prevalence of new psychoactive substances (NPSs) in forensic casework has increased prominently in recent years. This has given rise to significant legal and analytical challenges in the identification of these substances. The requirement for validated, robust and rapid testing methodologies for these compounds is obvious. This study details the analysis of 13 synthesised diphenidine derivatives encountered in casework using presumptive testing, thin layer chromatography and gas chromatography–mass spectrometry (GC-MS). Specifically, the validated GC-MS method provides, for the first time, both a general screening method and quantification of the active components for seized solid samples, both in their pure form and in the presence of common adulterants.

Chemical synthesis and forensic analysis of 13 diphenidine-derived new psychoactive substance(s)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lemahieu J-L, Me A. World Drug Report 2015. United Nations Office on Drugs and Crime. 2015. https://www.unodc.org/documents/wdr2015/World_Drug_Report_2015.pdf, accessed 29 June 2016.

  2. Smith JP, Sutcliffe OB, Banks CE. An overview of recent developments in the analytical detection of new psychoactive substances (NPSs). Analyst. 2015;140:4932–48.

    Article  CAS  Google Scholar 

  3. Morris H, Wallach J. From PCP to MXE: a comprehensive review of the non-medical use of dissociative drugs. Drug Test Anal. 2014;6(7–8):614–32.

    Article  CAS  Google Scholar 

  4. Wallach J, Kavanagh PV, McLaughlin G, Morris N, Power JD, Elliot SP, et al. Preparation and characterisation of the “research chemical” diphenidine, its pyrrolidine analogue, and their 2,2-diphenylethyl isomers. Drug Test Anal. 2015;7(5):358–67.

    Article  CAS  Google Scholar 

  5. McLaughlin G, Morris N, Kavanagh PV, Power JD, O’Brien J, Talbot B, et al. Test purchase, synthesis and characterization of 2-methoxydiphenidine (MXP) and differentiation from its meta- and para-substituted isomers. Drug Test Anal. 2016;8(1):99–110.

    Article  CAS  Google Scholar 

  6. Reuter P, Pardo B. Can new psychoactive substances be regulated effectively? An assessment of the British Psychoactive Substances Bill. Addiction 2016; Article in Press. doi:10.1111/add.13439.

  7. Helander A, Beck O, Baeckberg M. Intoxications by the dissociative new psychoactive substance diphenidine and methoxphenidine. Clin Toxicol. 2015;53(5):446–53.

    Article  CAS  Google Scholar 

  8. Hasegawa K, Wurita A, Minakata K, Gonmori K, Nozawa H, Yamagishi I, et al. Postmortem distribution of AB-CHMINACA, 5-fluoro-AMB, and diphenidine in body fluids and solid tissues in a fatal poisoning case: usefulness of adipose tissue for detection of drugs in unchanged forms. Forensic Toxicol. 2015;33(1):45–53.

    Article  CAS  Google Scholar 

  9. Minakata K, Yamagishi I, Nozawa H, Hasegawa K, Gonmori K, Suzuki M, et al. Semiquantification of diphenidine is tissue sections obtained from a human cadaver in a poisoning case by direct MALDI-QTOF mass spectrometry. Forensic Toxicol. 2016;34(1):151–7.

    Article  CAS  Google Scholar 

  10. Kudo K, Usumoto Y, Kikura-Hanajiri R, Sameshima N, Tsuji A, Ikeda N. A fatal case of poisoning related to new cathinone designer drugs, 4-methoxy PV8, PV9 and 4-methoxy PV9, and a dissociative agent, diphenidine. Leg Med. 2016;17(5):421–6.

    Article  Google Scholar 

  11. Odoardi S, Romolo FS, Strano-Rossi S. A snapshot of NPS in Italy: distribution of drugs in seized materials analysed in an Italian forensic laboratory in the period 2013–2015. Forensic Sci Int. 2016;265:116–20.

    Article  CAS  Google Scholar 

  12. Strano-Rossi S, Odoardi S, Gregori A, Peluso G, Ripani L, Ortar G, et al. An analytical approach to the forensic identification of different classes of new psychoactive substances (NPSs) in seized materials. Rapid Commun Mass Spectrom. 2014;28(17):1904–16.

    Article  CAS  Google Scholar 

  13. Wurita A, Hasegawa K, Minakata K, Watanabe K, Suzuki O. A large amount of new designer drug diphenidine coexisting with a synthetic cannabinoid 5-fluoro-AB-PINACA found in a dubious herbal product. Forensic Toxicol. 2014;32(2):331–7.

    Article  CAS  Google Scholar 

  14. Jones LE, Stewart A, Peters KL, McNaul M, Speers SJ, Fletcher NC, et al. Infrared and Raman screening of seized novel psychoactive substances: a large scale study of >200 samples. Analyst. 2016;141(3):902–9.

    Article  CAS  Google Scholar 

  15. Uchiyama N, Shimokawa Y, Kawamura M, Kikura-Hanajiri R, Hakamatsuka T. Chemical analysis of a benzofuran derivative, 2-(2-ethylaminopropyl)benzofuran (2-EAPB), eight synthetic cannabinoids, five cathinone derivatives, and five other designer drugs newly detected in illegal products. Forensic Toxicol. 2014;32(2):266–81.

    Article  CAS  Google Scholar 

  16. Wink CSD, Michely JA, Jacobsen-Bauer A, Zapp J, Maurer Hans H. Diphenidine, a new psychoactive substance: metabolic fate elucidated with rat urine and human liver preparations and detectability in urine using GC-MS, LC-MSn, and LC-HR-MSn. Drug Test Anal. 2016; Article in Press. doi:10.1002/dta.1946

  17. Odoardi S, Fisichella M, Romolo FS, Strano-Rossi S. High-throughput screening for new psychoactive substances (NPS) in whole blood by DLLME extraction and UHPLC-MS/MS analysis. J Chromatogr B Analyt Technol Biomed Life Sci. 2015;1000:57–68.

    Article  CAS  Google Scholar 

  18. Salomone A, Gazzilli G, Di Corcia D, Gerace E, Vicenti M. Determination of cathinones and other stimulant, psychedelic, and dissociative designer drugs in real hair samples. Anal Bioanal Chem. 2016;408(8):2035–42.

    Article  CAS  Google Scholar 

  19. Elliot SP, Brandt SD, Wallach J, Morris H, Kavanagh PV. First reported fatalities associated with the “research chemical” 2-methoxydiphenidine. J Anal Toxicol. 2015;39(4):287–93.

    Article  Google Scholar 

  20. Hofer KE, Degrandi C, Muller DM, Zurrer-Hardi U, Wahl S, Rauber-Luthy C, et al. Acute toxicity associated with the recreational use of the novel dissociate psychoactive substance methoxphenidine. Clin Toxicol. 2014;52(10):1288–91.

    Article  Google Scholar 

  21. Fulmer GR, Miller AJM, Sherden NH, Gottlieb HE, Nudelman A, Stolz BM, et al. NMR chemical shifts of trace impurities: common laboratory solvents, organics and gases in deuterated solvents relevant to the organometallic chemist. Organometallics. 2010;29:2176–9.

    Article  CAS  Google Scholar 

  22. Yang F, Yu X, Liu C, Qu CX, Gong Z, Liu HD, et al. Phospho-selective mechanisms of arrestin conformations and functions revealed by unnatural amino acid incorporation and 19F-NMR. Nat Commun. 2015;6:8202.

    Article  Google Scholar 

  23. Le Gall E, Haurena C, Sengmany S, Martens T, Troupel M. Three-component synthesis of α-branched amines under Barbier-like conditions. J Org Chem. 2009;74:7970–3.

    Article  Google Scholar 

  24. Rapid testing methods of drugs of abuse. United Nations Office on Drugs and Crime. 1995. https://www.unodc.org/documents/scientific/Rapid_Testing_Methods_of_Drugs_of_Abuse_E.pdf, accessed 29 June 2016.

  25. Validation of analytical procedures: text and methodology Q2(R1). International Conference on Harmonisation (ICH) of technical requirements for registration of pharmaceuticals for human use. http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q2_R1/Step4/Q2_R1__Guideline.pdf, accessed 29 June 2016.

  26. Kovar K-A, Laudszun M. Chemistry and reaction mechanisms of rapid tests for drugs of abuse and precursor chemicals. United Nations Office on Drugs and Crime. 1989. http://www.unodc.org/pdf/scientific/SCITEC6.pdf, accessed 29 June 2016.

  27. Nagy G, Szöllősi I, Szendrei K. Colour tests for precursor chemicals of amphetamine-type substances the use of colour tests for distinguishing between ephedrine-derivatives. 2005. United Nations Office on Drugs and Crime. http://www.unodc.org/pdf/scientific/SCITEC20-fin.pdf, accessed 29 June 2016.

  28. Nic Daeid N, Savage KA, Ramsay D, Holland C, Sutcliffe OB. Development of gas chromatography–mass spectrometry (GC-MS) and other rapid screening methods for the analysis of 16 ‘legal high’ cathinone derivatives. Sci Justice. 2014;54:22–31.

    Article  Google Scholar 

  29. Khreit OIG, Irving C, Schmidt E, Parkinson JA, Nic Daeid N, Sutcliffe OB. Synthesis, full chemical characterisation and development of validated methods for the quantification of the components found in the evolved “legal high” NRG-2. J Pharm Biomed Anal. 2012;5(61):122–35.

    Article  Google Scholar 

  30. Brandt SD, Freeman S, Sumnall HR, Measham F, Cole J. Analysis of NRG ‘legal highs’ in the UK: identification and formation of novel cathinones. Drug Test Anal. 2011;3(9):569–75.

    Article  CAS  Google Scholar 

  31. Smith JP, Metters JP, Khreit OIG, Sutcliffe OB, Banks CE. Forensic electrochemistry applied to the sensing of new psychoactive substances: electroanalytical sensing of synthetic cathinones and analytical validation in the quantification of seized street samples. Anal Chem. 2014;86(19):9985–92.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver B. Sutcliffe.

Ethics declarations

This study did not involve research on human participants or animals.

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 2147 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geyer, P.M., Hulme, M.C., Irving, J.P.B. et al. Guilty by dissociation—development of gas chromatography–mass spectrometry (GC-MS) and other rapid screening methods for the analysis of 13 diphenidine-derived new psychoactive substances (NPSs). Anal Bioanal Chem 408, 8467–8481 (2016). https://doi.org/10.1007/s00216-016-9969-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9969-y

Keywords

Navigation