Skip to main content

Advertisement

Log in

GlycoPep MassList: software to generate massive inclusion lists for glycopeptide analyses

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Protein glycosylation drives many biological processes and serves as markers for disease; therefore, the development of tools to study glycosylation is an essential and growing area of research. Mass spectrometry can be used to identify both the glycans of interest and the glycosylation sites to which those glycans are attached, when proteins are proteolytically digested and their glycopeptides are analyzed by a combination of high-resolution mass spectrometry (MS) and tandem mass spectrometry (MS/MS) methods. One major challenge in these experiments is collecting the requisite MS/MS data. The digested glycopeptides are often present in complex mixtures and in low abundance, and the most commonly used approach to collect MS/MS data on these species is data-dependent acquisition (DDA), where only the most intense precursor ions trigger MS/MS. DDA results in limited glycopeptide coverage. Semi-targeted data acquisition is an alternative experimental approach that can alleviate this difficulty. However, due to the massive heterogeneity of glycopeptides, it is not obvious how to expediently generate inclusion lists for these types of analyses. To solve this problem, we developed the software tool GlycoPep MassList, which can be used to generate inclusion lists for liquid chromatography tandem-mass spectrometry (LC-MS/MS) experiments. The utility of the software was tested by conducting comparisons between semi-targeted and untargeted data-dependent analysis experiments on a variety of proteins, including IgG, a protein whose glycosylation must be characterized during its production as a biotherapeutic. When the GlycoPep MassList software was used to generate inclusion lists for LC-MS/MS experiments, more unique glycopeptides were selected for fragmentation. Generally, ∼30 % more unique glycopeptides can be analyzed per protein, in the simplest cases, with low background. In cases where background ions from proteins or other interferents are high, usage of an inclusion list is even more advantageous. The software is freely publically accessible.

Software increases the number of glycopeptides that get selected for MS/MS analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dwek RA. Glycobiology: toward understanding the function of sugars. Chem Rev. 1996;96(2):683–720. doi:10.1021/cr940283b.

    Article  CAS  Google Scholar 

  2. Deribe YL, Pawson T, Dikic I. Post-translational modifications in signal integration. Nat Struct Mol Biol. 2010;17(6):666–72. doi:10.1038/nsmb.1842.

    Article  CAS  Google Scholar 

  3. Raman R, Raguram S, Venkataraman G, Paulson JC, Sasisekharan R. Glycomics: an integrated systems approach to structure-function relationships of glycans. Nat Methods. 2005;2(11):817–24. doi:10.1038/nmeth807.

    Article  CAS  Google Scholar 

  4. Harvey DJ. Proteomic analysis of glycosylation: structural determination of N- and O-linked glycans by mass spectrometry. Expert Rev Proteomics. 2005;2(1):87–101. doi:10.1586/14789450.2.1.87.

    Article  CAS  Google Scholar 

  5. Dell A, Morris HR. Glycoprotein structure determination by mass spectrometry. Science. 2001;291(5512):2351–6. doi:10.1126/science.1058890.

    Article  CAS  Google Scholar 

  6. Go EP, Rebecchi KR, Dalpathado DS, Bandu ML, Zhang Y, Desaire H. GlycoPep DB: a tool for glycopeptide analysis using a “smart search”. Anal Chem. 2007;79(4):1708–13. doi:10.1021/ac061548c.

    Article  CAS  Google Scholar 

  7. Wormald MR, Dwek RA. Glycoproteins: glycan presentation and protein-fold stability. Structure. 1999;7(7):R155–60. doi:10.1016/s0969-2126(99)80095-1.

    Article  CAS  Google Scholar 

  8. Nagae M, Yamaguchi Y. Function and 3D structure of the N-glycans on glycoproteins. Int J Mol Sci. 2012;13(7):8398–429. doi:10.3390/ijms13078398.

    Article  CAS  Google Scholar 

  9. Kolarich D, Lepenies B, Seeberger PH. Glycomics, glycoproteomics and the immune system. Curr Opin Chem Biol. 2012;16(1–2):214–20. doi:10.1016/j.cbpa.2011.12.006.

    Article  CAS  Google Scholar 

  10. Leymarie N, Griffin PJ, Jonscher K, Kolarich D, Orlando R, McComb M, et al. Interlaboratory study on differential analysis of protein glycosylation by mass spectrometry: the ABRF glycoprotein research multi-institutional study 2012. Mol Cell Proteomics. 2013;12(10):2935–51. doi:10.1074/mcp.M113.030643.

    Article  CAS  Google Scholar 

  11. Grass J, Pabst M, Chang M, Wozny M, Altmann F. Analysis of recombinant human follicle-stimulating hormone (FSH) by mass spectrometric approaches. Anal Bioanal Chem. 2011;400(8):2427–38. doi:10.1007/s00216-011-4923-5.

    Article  CAS  Google Scholar 

  12. Fuster MM, Esko JD. The sweet and sour of cancer: glycans as novel therapeutic targets. Nat Rev Cancer. 2005;5(7):526–42. doi:10.1038/nrc1649.

    Article  CAS  Google Scholar 

  13. Gornik O, Lauc G. Glycosylation of serum proteins in inflammatory diseases. Dis Markers. 2008;25(4–5):267–78. doi:10.1155/2008/493289.

    Article  CAS  Google Scholar 

  14. Saroha A, Biswas S, Chatterjee BP, Das HR. Altered glycosylation and expression of plasma alpha-1-acid glycoprotein and haptoglobin in rheumatoid arthritis. J Chromatogr B Analyt Technol Biomed Life Sci. 2011;879(20):1839–43. doi:10.1016/j.jchromb.2011.04.024.

    Article  CAS  Google Scholar 

  15. Perdivara I, Deterding LJ, Cozma C, Tomer KB, Przybylski M. Glycosylation profiles of epitope-specific anti-beta-amyloid antibodies revealed by liquid chromatography-mass spectrometry. Glycobiology. 2009;19(9):958–70. doi:10.1093/glycob/cwp038.

    Article  CAS  Google Scholar 

  16. Fujimura T, Shinohara Y, Tissot B, Pang PC, Kurogochi M, Saito S, et al. Glycosylation status of haptoglobin in sera of patients with prostate cancer vs. benign prostate disease or normal subjects. Int J Cancer. 2008;122(1):39–49. doi:10.1002/ijc.22958.

    Article  CAS  Google Scholar 

  17. Qiu Y, Patwa TH, Xu L, Shedden K, Misek DE, Tuck M, et al. Plasma glycoprotein profiling for colorectal cancer biomarker identification by lectin glycoarray and lectin blot. J Proteome Res. 2008;7(4):1693–703. doi:10.1021/pr700706s.

    Article  CAS  Google Scholar 

  18. Drake PM, Schilling B, Niles RK, Prakobphol A, Li B, Jung K, et al. Lectin chromatography/mass spectrometry discovery workflow identifies putative biomarkers of aggressive breast cancers. J Proteome Res. 2012;11(4):2508–20. doi:10.1021/pr201206w.

    Article  CAS  Google Scholar 

  19. Stowell SR, Ju T, Cummings RD. Protein glycosylation in cancer. Annu Rev Pathol. 2015;10:473–510. doi:10.1146/annurev-pathol-012414-040438.

    Article  CAS  Google Scholar 

  20. Ohtsubo K, Marth JD. Glycosylation in cellular mechanisms of health and disease. Cell. 2006;126(5):855–67. doi:10.1016/j.cell.2006.08.019.

    Article  CAS  Google Scholar 

  21. Dube DH, Bertozzi CR. Glycans in cancer and inflammation-potential for therapeutics and diagnostics. Nat Rev Drug Discov. 2005;4(6):477–88. doi:10.1038/nrd1751.

    Article  CAS  Google Scholar 

  22. Goldberg D, Bern M, Parry S, Sutton-Smith M, Panico M, Morris HR, et al. Automated N-glycopeptide identification using a combination of single- and tandem-MS. J Proteome Res. 2007;6(10):3995–4005. doi:10.1021/pr070239f.

    Article  CAS  Google Scholar 

  23. Desaire H. Glycopeptide analysis, recent developments and applications. Mol Cell Proteomics. 2013;12(4):893–901. doi:10.1074/mcp.R112.026567.

    Article  CAS  Google Scholar 

  24. Dalpathado DS, Desaire H. Glycopeptide analysis by mass spectrometry. Analyst. 2008;133(6):731–8. doi:10.1039/b713816d.

    Article  CAS  Google Scholar 

  25. Desaire H, Hua D. When can glycopeptides be assigned based solely on high-resolution mass spectrometry data? Int J Mass Spectrom. 2009;287(1–3):21–6. doi:10.1016/j.ijms.2008.12.001.

    Article  CAS  Google Scholar 

  26. Mechref Y. Use of CID/ETD mass spectrometry to analyze glycopeptides. Curr Protoc Protein Sci. 2012;12(11):1–11. doi:10.1002/0471140864.ps1211s68.

    Google Scholar 

  27. Quan L, Liu M. CID, ETD and HCD fragmentation to study protein post-translational modifications. Mod Chem Appl. 2012;1(1), e102. doi:10.4172/mca.1000e102.

    Google Scholar 

  28. Aldredge D, An HJ, Tang N, Waddell K, Lebrilla CB. Annotation of a serum N-glycan library for rapid identification of structures. J Proteome Res. 2012;11(3):1958–68. doi:10.1021/pr2011439.

    Article  CAS  Google Scholar 

  29. Li F, Glinskii OV, Glinsky VV. Glycobioinformatics: current strategies and tools for data mining in MS-based glycoproteomics. Proteomics. 2013;13(2):341–54. doi:10.1002/pmic.201200149.

    Article  CAS  Google Scholar 

  30. Gagneux P, Varki A. Evolutionary considerations in relating oligosaccharide diversity to biological function. Glycobiology. 1999;9(8):747–55.

    Article  CAS  Google Scholar 

  31. Schmidt A, Gehlenborg N, Bodenmiller B, Mueller LN, Campbell D, Mueller M, et al. An integrated, directed mass spectrometric approach for in-depth characterization of complex peptide mixtures. Mol Cell Proteomics. 2008;7(11):2138–50. doi:10.1074/mcp.M700498-MCP200.

    Article  Google Scholar 

  32. Liu T, Qian W-J, Gritsenko MA, Camp II DG, Monroe ME, Moore RJ, et al. Human plasma N-glycoproteome analysis by immunoaffinity subtraction, hydrazide chemistry, and mass spectrometry. J Proteome Res. 2005;4(6):2070–80. doi:10.1021/pr0502065.

    Article  CAS  Google Scholar 

  33. Madera M, Mechref Y, Novotny MV. Combining lectin microcolumns with high-resolution separation techniques for enrichment of glycoproteins and glycopeptides. Anal Chem. 2005;77(13):4081–90. doi:10.1021/ac050222l.

    Article  CAS  Google Scholar 

  34. Hart-Smith G, Low JK, Erce MA, Wilkins MR. Enhanced methylarginine characterization by post-translational modification-specific targeted data acquisition and electron-transfer dissociation mass spectrometry. J Am Soc Mass Spectrom. 2012;23(8):1376–89. doi:10.1007/s13361-012-0417-8.

    Article  CAS  Google Scholar 

  35. Wu Y, Mechref Y, Klouckova I, Mayampurath A, Novotny MV, Tang H. Mapping site-specific protein N-glycosylations through liquid chromatography/mass spectrometry and targeted tandem mass spectrometry. Rapid Commun Mass Spectrom. 2010;24(7):965–72. doi:10.1002/rcm.4474.

    Article  CAS  Google Scholar 

  36. Froehlich JW, Dodds ED, Wilhelm M, Serang O, Steen JA, Lee RS. A classifier based on accurate mass measurements to aid large scale, unbiased glycoproteomics. Mol Cell Proteomics. 2013;12(4):1017–25. doi:10.1074/mcp.M112.025494.

    Article  CAS  Google Scholar 

  37. Varki A. Loss of N-glycolylneuraminic acid in humans: mechanisms, consequences, and implications for hominid evolution. Am J Phys Anthropol. 2001;116(33):54–69. doi:10.1002/ajpa.10018.

    Article  Google Scholar 

  38. Stadlmann J, Pabst M, Kolarich D, Kunert R, Altmann F. Analysis of immunoglobulin glycosylation by LC-ESI-MS of glycopeptides and oligosaccharides. Proteomics. 2008;8(14):2858–71. doi:10.1002/pmic.200700968.

    Article  CAS  Google Scholar 

  39. Selman MHJ, Derks RJE, Bondt A, Palmblad M, Schoenmaker B, Koeleman CAM, et al. Fc specific IgG glycosylation profiling by robust nano-reverse phase HPLC-MS using a sheath-flow ESI sprayer interface. J Proteomics. 2012;75(4):1318–29. doi:10.1016/j.jprot.2011.11.003.

    Article  CAS  Google Scholar 

  40. Zauner G, Selman MHJ, Bondt A, Rombouts Y, Blank D, Deelder AM, et al. Glycoproteomic analysis of antibodies. Mol Cell Proteomics. 2013;12(4):856–65. doi:10.1074/mcp.R112.026005.

    Article  CAS  Google Scholar 

  41. Vidarsson G, Dekkers G, Rispens T. IgG subclasses and allotypes: from structure to effector functions. Front Immunol. 2014;5:1–17. doi:10.3389/fimmu.2014.00520.

    Article  CAS  Google Scholar 

  42. Shade K-T, Anthony R. Antibody glycosylation and inflammation. Antibodies. 2013;2(3):392–414. doi:10.3390/antib2030392.

    Article  Google Scholar 

  43. Jefferis R. Glycosylation as a strategy to improve antibody-based therapeutics. Nat Rev Drug Discov. 2009;8(3):226–34. doi:10.1038/nrd2804.

    Article  CAS  Google Scholar 

  44. Ghaderi D, Taylor RE, Padler-Karavani V, Diaz S, Varki A. Implications of the presence of N-glycolylneuraminic acid in recombinant therapeutic glycoproteins. Nat Biotechnol. 2010;28(8):863–7. doi:10.1038/nbt.1651.

    Article  CAS  Google Scholar 

  45. Shah B, Jiang XG, Chen L, Zhang Z. LC-MS/MS peptide mapping with automated data processing for routine profiling of N-glycans in immunoglobulins. J Am Soc Mass Spectrom. 2014;25(6):999–1011. doi:10.1007/s13361-014-0858-3.

    Article  CAS  Google Scholar 

  46. Reusch D, Haberger M, Maier B, Maier M, Kloseck R, Zimmermann B, et al. Comparison of methods for the analysis of therapeutic immunoglobulin G Fc-glycosylation profiles—part 1: separation-based methods. MAbs. 2015;7(1):167–79. doi:10.4161/19420862.2014.986000.

    Article  CAS  Google Scholar 

  47. Wuhrer M, Stam JC, van de Geijn FE, Koeleman CA, Verrips CT, Dolhain RJ, et al. Glycosylation profiling of immunoglobulin G (IgG) subclasses from human serum. Proteomics. 2007;7(22):4070–81. doi:10.1002/pmic.200700289.

    Article  CAS  Google Scholar 

  48. Oliver RWA, Greent BN, Harvey DJ. The use of electrospray ionization MS to determine the structure of glycans in intact glycoproteins. Biochem Soc Trans. 1996;24(3):917–27. doi:10.1042/bst0240917.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH Grant R01GM103547 to Heather Desaire.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heather Desaire.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Published in the topical collection Glycomics, Glycoproteomics and Allied Topics with guest editors Yehia Mechref and David Muddiman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 143 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, W., Su, X., Zhu, Z. et al. GlycoPep MassList: software to generate massive inclusion lists for glycopeptide analyses. Anal Bioanal Chem 409, 561–570 (2017). https://doi.org/10.1007/s00216-016-9896-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9896-y

Keywords

Navigation