Skip to main content
Log in

Novel bis(5-methyltetrazolium)amine ligand-bonded stationary phase with reduced leakage of metal ions in immobilized metal affinity chromatography of proteins

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Immobilized metal affinity chromatography (IMAC) has been widely used for the specific separation of biopolymers. However, leakage of metal ions from IMAC adsorbents is of concern in IMAC. In this study, we designed a novel tridenate bis(5-methyltetrazolium)amine (BMTA) to reduce the leakage of metal ions by improving the affinity to immobilized metal ions. The ligand was bonded onto silica via three-step reaction to prepare a high-performance IMAC stationary phase. The chromatographic behaviors of ribonuclease A, cytochrome c, and lysozyme on the Cu(II)-, Ni(II)-, and Zn(II)-chelated stationary phase were investigated with respect to pH effect and elution with an imidazole gradient. The retention times of these three proteins increased by increasing the pH of the mobile phase but decreased by increasing the concentration of the competitive displacer. The retaining strength of the three proteins on the chelated stationary phase were in the order Cu(II) > Ni(II) > Zn(II). The behavior of these three proteins was consistent with the properties of a typical IMAC. The BMTA ligand exhibited a much stronger affinity for Cu(II) and Ni(II) than iminodiacetic acid (IDA), which is often regarded as a standard tridentate IMAC ligand. Quantum mechanical calculations at the B3LYP/6-31G level were used to image the coordination mode of the protein-metal ions-BMTA complex. In addition, a fused histidine-tagged cecropin b-human epidermal growth factor (CB-EGF) from Escherichia coli crude extract was purified by the Ni(II)-chelated stationary phase, and the purity of the CB-EGF was determined to be at least 90 %. These results suggest that the BMTA ligand may have potential applications in the preparation of therapeutics.

A novel ligand of tridenate bis(5-methyltetrazolium)amine (BMTA) was designed to reduce the leakage of metal ions from the column in immobolized metal affinity chromatography (IMAC).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Diagram 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Porath J, Carlsson JAN, Olsson I, Belfrage G. Metal chelate affinity chromatography, a new approach to protein fractionation. Nature. 1975;258:598–9.

    Article  CAS  Google Scholar 

  2. Bibi NS, Singh NK, Dsouza RN, Aasim M, Fernández-Lahore M. Synthesis and performance of megaporous immobilized metal-ion affinity cryogels for recombinant protein capture and purification. J Chromatogr A. 2013;1272:145–9.

    Article  CAS  Google Scholar 

  3. Mirza MR, Rainer M, Messner CB, Güzel Y, Schemeth D, Stasyk T, et al. A new type of metal chelate affinity chromatography using trivalent lanthanide ions for phosphopeptide enrichment. Analyst. 2013;138:2995–3004.

    Article  CAS  Google Scholar 

  4. Smith CL, Stauber JL, Wilson MR, Jolley DF. The use of immobilized metal affinity chromatography (IMAC) to compare expression of copper-binding proteins in control and copper-exposed marine microalgae. Anal Bioanal Chem. 2014;406:305–15.

    Article  CAS  Google Scholar 

  5. Block H, Maertens B, Priestersbach A, Brinker N, Kubicek J, Fabis R, et al. Immobilized-metal affinity chromatography (IMAC): a review. Methods Enzymol. 2009;463:439–73.

    Article  CAS  Google Scholar 

  6. Kowalska E, Bartnicki F, Pels K, Strzalka W. The impact of immobilized metal affinity chromatography (IMAC) resins on DNA aptamer selection. Anal Bioanal Chem. 2014;406:5495–9.

    Article  CAS  Google Scholar 

  7. Jiang W, Hearn MTW. Protein interaction with immobilized metal ion affinity ligands under high ionic strength conditions. Anal Biochem. 1996;242:45–54.

    Article  CAS  Google Scholar 

  8. Gaberc-Porekar V, Menart V. Perspectives of immobilized-metal affinity chromatography. J Biochem Bioph Methods. 2001;49:335–60.

    Article  CAS  Google Scholar 

  9. Hage DS, Anguizola JA, Bi C, Li R, Matsuda R, Papastavros E, et al. Pharmaceutical and biomedical applications of affinity chromatography: recent trends and developments. J Pharm Biomed Anal. 2012;69:93–105.

    Article  CAS  Google Scholar 

  10. Pfaunmiller E, Paulemond M, Dupper C, Hage D. Affinity monolith chromatography: a review of principles and recent analytical applications. Anal Bioanal Chem. 2013;405:2133–45.

    Article  CAS  Google Scholar 

  11. Yao XP, Fu ZJ, Zhao YG, Wang L, Fang LY, Shen HY. Use of tetraethylenepentamine-functional Fe3O4 magnetic polymers for matrix solid phase dispersion extraction and preconcentration of Cr(VI) in water samples at ultratrace levels. Talanta. 2012;97:124–30.

    Article  CAS  Google Scholar 

  12. Chaouk H, Hearn MTW. New ligand, N-(2-pyridylmethyl)aminoacetate, for use in the immobilized metal ion affinity chromatographic separation of proteins. J Chromatogr A. 1999;852:105–15.

    Article  CAS  Google Scholar 

  13. Petzold M, Coghlan CJ, Hearn MTW. Studies with an immobilized metal affinity chromatography cassette system involving binuclear triazacyclononane-derived ligands: automation of batch adsorption measurements with tagged recombinant proteins. J Chromatogr A. 2014;1351:61–9.

    Article  CAS  Google Scholar 

  14. Mooney JT, Fredericks D, Hearn MTW. Use of phage display methods to identify heptapeptide sequences for use as affinity purification ‘tags’ with novel chelating ligands in immobilized metal ion affinity chromatography. J Chromatogr A. 2011;1218:92–9.

    Article  CAS  Google Scholar 

  15. Mooney JT, Fredericks D, Christensen T, Hearn MTW. Removal of cleavage slow points from affinity tags used in the IMAC purification of recombinant proteins. J Biotechnol. 2014;9:1023–32.

    Article  CAS  Google Scholar 

  16. Mooney JT, Fredericks D, Hearn MTW. Application of an IMAC cassette for the purification of N-terminally tagged proteins. Sep Purif Technol. 2013;120:265–74.

    Article  CAS  Google Scholar 

  17. Ueda EKM, Gout PW, Morganti L. Current and prospective applications of metal ion-protein binding. J Chromatogr A. 2003;988:1–23.

    Article  CAS  Google Scholar 

  18. Kagedal L. In: Janson JC, Ryden L, editors. Protein purification. New York: Wiley; 1989. p. 227–51.

    Google Scholar 

  19. Porath J. IMAC-Immobilized metal ion affinity based chromatography. Trends Anal Chem. 1988;7:254–9.

    Article  CAS  Google Scholar 

  20. Codd R, Gu J, Ejje N, Lifa T. New applications of immobilized metal ion affinity chromatography in chemical biology. In: Inorganic chemical biology. Wiley, 2014. 1–35.

  21. Lei GH, Liu LT, Xiong XH, Wei YM, Zheng XH. New α-amino phenylalanine tetrazole ligand for immobilized metal affinity chromatography of proteins. J Sep Sci. 2008;31:3002–8.

    Article  CAS  Google Scholar 

  22. Sheng RL, Wang PF, Gao YH, Wu Y, Liu WM, Ma JJ, et al. Colorimetric test kit for Cu2+ detection. Org Lett. 2008;10:5015–8.

    Article  CAS  Google Scholar 

  23. Demko ZP, Sharpless KB. An expedient route to the tetrazole analogues of α-amino acids. Org Lett. 2004;4:2525–7.

    Article  Google Scholar 

  24. Mehyou Z, Lobinski R, Hagège A. One-step coating of silica capillaries for selective protein retention by Cu(II)-IDA IMAC. Talanta. 2011;87:168–73.

    Article  CAS  Google Scholar 

  25. Morley JS. Polypeptides. XI. Tetrazole analogues of the C-terminal tetrapeptide amide sequence of the gastrins. J Chem Soc. 1969;5:809–13.

    CAS  Google Scholar 

  26. Zhang Y, Chen YN, Wang CZ, Wei YM. Immobilization of 5-aminopyridine-2-tetrazole on cross-linked polystyrene for the preparation of a new adsorbent to remove heavy metal ions from aqueous solution. J Hazard Mater. 2014;76:129–37.

    Article  Google Scholar 

  27. Jin XL, Yu C, Li YF, Qi YX, Yang LQ, Zhao GH, et al. Preparation of novel nano-adsorbent based on organic–inorganic hybrid and their adsorption for heavy metals and organic pollutants presented in water environment. J Hazard Mater. 2011;186:1672–80.

    Article  CAS  Google Scholar 

  28. Jiang W, Chen XB, Pan BC, Zhang QX, Teng L, Chen YF, et al. Spherical polystyrene supported chitosan thin film of fast kinetics and high capacity for copper removal. J Hazard Mater. 2014;276:295–301.

    Article  CAS  Google Scholar 

  29. Lei GH, Xiong XH, Wei YM, Zheng XH, Zheng JB. Novel tetrazole-functionalized ion exchanger for weak cation-exchange chromatography of proteins. J Chromatogr A. 2008;1187:197–204.

    Article  CAS  Google Scholar 

  30. Belew M, Porath J. Immobilized metal ion affinity chromatography: effect of solute structure, ligand density, and salt concentration on the retention of peptides. J Chromatogr A. 1990;516:333–54.

    Article  CAS  Google Scholar 

  31. Wu CY, Suen SY, Chen SC, Tzeng JH. Analysis of protein adsorption on regenerated cellulose-based immobilized copper ion affinity membranes. J Chromatogr A. 2003;996:53–70.

    Article  CAS  Google Scholar 

  32. Haley R, Fruchtl M, Brune EM, Ataai M, Henry R, Beitle R. A redesigned escherichia coli triosephosphate isomerase restores growth properties in a bacterial strain useful for immobilized metal affinity chromatography (IMAC). J Biotechnol. 2014;188:48–52.

    Article  CAS  Google Scholar 

  33. Leonidas DD, Maiti TK, Samanta A, Dasgupta S, Pathak T, Zographos SE, et al. The binding of 3'-N-piperidine-4-carboxyl-3'-deoxy-ara-uridine to ribonuclease A in the crystal. Bioorg Med Chem. 2006;14:6055–64.

    Article  CAS  Google Scholar 

  34. Di ZM, Chen GL, Lei JD, Li R, Li HR. Synthesis of metal chelate affinity chromatographic medium and studies of chromatographic characteristics. Chin J Chromatogr. 1998;6:297–300.

    Google Scholar 

  35. Geng XD. Guide to theory of modern separation science. Beijing: Higher Education Press; 2001. p. 54–108.

    Google Scholar 

  36. Geng XD, Regnier FE. Retention model for proteins in reversed-phase liquid chromatography. J Chromatogr A. 1984;296:15–30.

    Article  CAS  Google Scholar 

  37. Ko YM, Chen CI, Shieh CJ, Liu YC. Simultaneous purification and immobilization of d-hydantoinase on the immobilized metal affinity membrane via coordination bonds. Biochem Eng J. 2012;61:20–7.

    Article  CAS  Google Scholar 

  38. Tsai YH, Wang MY, Suen SY. Purification of hepatocyte growth factor using polyvinyldiene fluoride based immobilized metal affinity membranes: equilibrium adsorption study. J Chromatogr B. 2002;766:133–43.

    Article  CAS  Google Scholar 

  39. Li R, Wang Y, Chen GL, Mei S, Wang XG, Zheng JB, et al. Effects of immobilized metal ion on retention behaviors of proteins in metal chelate affinity chromatography. J Chin Chem Soc. 2011;58:215–21.

    Article  CAS  Google Scholar 

  40. Sharma S, Agarwal GP. Interactions of proteins with immobilized metal ions: a comparative analysis using various isotherm models. Anal Biochem. 2001;288:126–40.

    Article  CAS  Google Scholar 

  41. Chen WY, Wu CF, Liu CC. Interactions of imidazole and proteins with immobilized Cu(II) ions: effects of structure, salt concentration, and pH in affinity and binding capacity. J Colloid Interface Sci. 1996;180:135–43.

    Article  CAS  Google Scholar 

  42. Geng XD, Ke CY, Chen G, Liu P, Wang F, Zhang HQ, et al. On-line separation of native proteins by two-dimensional liquid chromatography using a single column. J Chromatogr A. 2009;1216:3553–62.

    Article  CAS  Google Scholar 

  43. Rassi Z, Horváth C. Metal chelate-interaction chromatography of proteins with iminodiacetic acid-bonded stationary phases on silica support. J Chromatogr A. 1986;359:241–53.

    Article  Google Scholar 

  44. Raghavachari K. Perspective on Density functional thermochemistry. III. The role of exact exchange. Theor Chem Acc. 2000;103:361–3.

    Article  CAS  Google Scholar 

  45. De Meyer T, Hemelsoet K, Van der Schueren L, Pauwels E, De Clerck K, Van Speybroeck V. Investigating the halochromic properties of azo dyes in an aqueous environment by using a combined experimental and theoretical approach. Chem Eur J. 2012;18:8120–9.

    Article  Google Scholar 

  46. Improta R. Quantum mechanical calculations unveil the structure and properties of the absorbing and emitting excited electronic states of guanine quadruplex. Chem Eur J. 2014;20:8106–15.

    Article  CAS  Google Scholar 

  47. Wan Y, Shen WR, Han LP. Prokaryotic expression, purification and fermentation of cecropin B and epidermal growth factor fusion protein. Chin J Biol. 2009;22:1075–9.

    CAS  Google Scholar 

  48. Chang Q, Liang F, Chang JH. Multiple injection method of protein separation on liquid chromatography. Chem World. 2006;47:81–7.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China (Nos. 21275115, 21475104, and 21575114), the Industry Development Project by the Science and Technology Department of Shaanxi Province (No. 2016GY-214), and the Changjiang Scholars and Innovative Research Team in University (IRT-15R55).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinmao Wei.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 525 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bo, C., Wang, C. & Wei, Y. Novel bis(5-methyltetrazolium)amine ligand-bonded stationary phase with reduced leakage of metal ions in immobilized metal affinity chromatography of proteins. Anal Bioanal Chem 408, 7595–7605 (2016). https://doi.org/10.1007/s00216-016-9826-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9826-z

Keywords

Navigation