Skip to main content
Log in

Double-hairpin molecular-beacon-based amplification detection for gene diagnosis linked to cancer

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A powerful double-hairpin molecular beacon (DHMB) was developed for cancer-related KRAS gene detection based on the one-to-two stoichiometry. During target DNA detection, DHMB can execute signal transduction even if no any exogenous element is involved. Unlike the conventional molecular beacon based on the one-to-one interaction, one target DNA not only hybridizes with one DHMB and opens its hairpin but also promotes the interaction between two DHMBs, causing the separation of two fluorophores from quenchers. This leads to an enhanced fluorescence signal. As a result, the target KRAS gene is able to be detected within a wide dynamic range from 0.05 to 200 nM with the detection limit of 50 pM, indicating a dramatic improvement compared with traditional molecular beacons. Moreover, the point mutations existing in target DNAs can be easily screened. The potential application for target species in real samples was indicated by the analysis of PCR amplicons of DNAs from the DNA extracted from SW620 cell. Besides becoming a promising candidate probe for molecular biology research and clinical diagnosis of genetic diseases, the DHMB is expected to provide a significant insight into the design of DNA probe-based homogenous sensing systems.

A powerful double-hairpin molecular beacon (DHMB) was developed for cancer-related gene KRAS detection based on the one-to-two stoichiometry. Without the help of any exogenous probe, the point mutation is easily screened, and the target DNA can be quantified down to 50 pM, indicating a dramatic improvement compared with traditional molecular beacons

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Saito H, Sekizawa A, Morimoto T, Suzuki M, Yanaihara T. Prenatal DNA diagnosis of a single-gene disorder from maternal plasma. Lancet. 2000;356(9236):1170.

    Article  CAS  Google Scholar 

  2. Williamson R, Eskdale J, Coleman D, Niazi M, Loeffler F, Modell B. Direct gene analysis of chorionic villi: a possible technique for first-trimester antenatal diagnosis of haemoglobinopathies. Lancet. 1981;318(8256):1125–7.

    Article  Google Scholar 

  3. Meng H-M, Zhang X, Lv Y, Zhao Z, Wang N-N, Fu T, et al. DNA dendrimer: an efficient nanocarrier of functional nucleic acids for intracellular molecular sensing. ACS Nano. 2014;8(6):6171–81.

    Article  CAS  Google Scholar 

  4. Yang Y, Huang J, Yang X, Quan K, Wang H, Ying L, et al. FRET nanoflares for intracellular mRNA detection: avoiding false positive signals and minimizing effects of system fluctuations. J Am Chem Soc. 2015;137(26):8340–3.

    Article  CAS  Google Scholar 

  5. Qiu L, Wu C, You M, Han D, Chen T, Zhu G, et al. A targeted, self-delivered, and photocontrolled molecular beacon for mRNA detection in living cells. J Am Chem Soc. 2013;135(35):12952–5.

    Article  CAS  Google Scholar 

  6. Deng R, Tang L, Tian Q, Wang Y, Lin L, Li J. Toehold-initiated rolling circle amplification for visualizing individual microRNAs in situ in single cells. Angew Chem Int Ed. 2014;53(9):2389–93.

    Article  CAS  Google Scholar 

  7. Xuan F, Fan TW, Hsing I-M. Electrochemical interrogation of kinetically-controlled dendritic DNA/PNA assembly for immobilization-free and enzyme-free nucleic acids sensing. ACS Nano. 2015;9(5):5027–33.

    Article  CAS  Google Scholar 

  8. Wang F, Lu C-H, Liu X, Freage L, Willner I. Amplified and multiplexed detection of DNA using the dendritic rolling circle amplified synthesis of DNAzyme reporter units. Anal Chem. 2014;86(3):1614–21.

    Article  CAS  Google Scholar 

  9. Xuan F, Hsing I-M. Triggering hairpin-free chain-branching growth of fluorescent DNA dendrimers for nonlinear hybridization chain reaction. J Am Chem Soc. 2014;136(28):9810–3.

    Article  CAS  Google Scholar 

  10. Wang F, Elbaz J, Orbach R, Magen N, Willner I. Amplified analysis of DNA by the autonomous assembly of polymers consisting of DNAzyme wires. J Am Chem Soc. 2011;133(43):17149–51.

    Article  CAS  Google Scholar 

  11. Li Z, Miao X, Xing K, Zhu A, Ling L. Enhanced electrochemical recognition of double-stranded DNA by using hybridization chain reaction and positively charged gold nanoparticles. Biosens Bioelectron. 2015;74:687–90.

    Article  CAS  Google Scholar 

  12. Miao XM, Xiong C, Wang WW, Ling LS, Shuai XT. Dynamic-light-scattering-based sequence-specific recognition of double-stranded DNA with oligonucleotide-functionalized gold nanoparticles. Chem-Eur J. 2011;17(40):11230–6.

    Article  CAS  Google Scholar 

  13. Cheglakov Z, Cronin TM, He C, Weizmann Y. Live-cell microRNA imaging using cascade hybridization reaction. J Am Chem Soc. 2015.

  14. Tyagi S, Marras SA, Kramer FR. Wavelength-shifting molecular beacons. Nat Biotechnol. 2000;18(11):1191–6.

    Article  CAS  Google Scholar 

  15. Tyagi S, Kramer FR. Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol. 1996;14(3):303–8.

    Article  CAS  Google Scholar 

  16. Tyagi S, Bratu DP, Kramer FR. Multicolor molecular beacons for allele discrimination. Nat Biotechnol. 1998;16(1):49–53.

    Article  CAS  Google Scholar 

  17. Zhou J, Lu Q, Tong Y, Wei W, Liu S. Detection of DNA damage by using hairpin molecular beacon probes and graphene oxide. Talanta. 2012;99:625–30.

    Article  CAS  Google Scholar 

  18. Xiong Y, Wei M, Wei W, Yin L, Pu Y, Liu S. Detection of DNA damage based on metal-mediated molecular beacon and DNA strands displacement reaction. Spectrochim Acta A. 2014;118:806–10.

    Article  CAS  Google Scholar 

  19. Johnston AP, Caruso F. A molecular beacon approach to measuring the DNA permeability of thin films. J Am Chem Soc. 2005;127(28):10014–5.

    Article  CAS  Google Scholar 

  20. Lu L-M, Zhang X-B, Kong R-M, Yang B, Tan W. A ligation-triggered DNAzyme cascade for amplified fluorescence detection of biological small molecules with zero-background signal. J Am Chem Soc. 2011;133(30):11686–91.

    Article  CAS  Google Scholar 

  21. Xue Q, Wang L, Jiang W. Label-free molecular beacon-based quadratic isothermal exponential amplification: a simple and sensitive one-pot method to detect DNA methyltransferase activity. Chem Commun. 2015;51(70):13538–41.

    Article  CAS  Google Scholar 

  22. Ye T, Liu Y, Luo M, Xiang X, Ji X, Zhou G, et al. Metal–organic framework-based molecular beacons for multiplexed DNA detection by synchronous fluorescence analysis. Analyst. 2014;139(7):1721–5.

    Article  CAS  Google Scholar 

  23. Miao X, Guo X, Xiao Z, Ling L. Electrochemical molecular beacon biosensor for sequence-specific recognition of double-stranded DNA. Biosens Bioelectron. 2014;59:54–7.

    Article  CAS  Google Scholar 

  24. Li JJ, Chu Y, Lee BY-H, Xie XS. Enzymatic signal amplification of molecular beacons for sensitive DNA detection. Nucleic Acids Res. 2008;36(6), e36.

    Article  Google Scholar 

  25. Nilsson M, Gullberg M, Dahl F, Szuhai K, Raap AK. Real-time monitoring of rolling-circle amplification using a modified molecular beacon design. Nucleic Acids Res. 2002;30(14):e66-e.

    Article  Google Scholar 

  26. Zuo X, Xia F, Xiao Y, Plaxco KW. Sensitive and selective amplified fluorescence DNA detection based on exonuclease III-aided target recycling. J Am Chem Soc. 2010;132(6):1816–8.

    Article  CAS  Google Scholar 

  27. Peyssonnaux C, Eychène A. The Raf/MEK/ERK pathway: new concepts of activation. Biol Cell. 2001;93(1-2):53–62.

    Article  CAS  Google Scholar 

  28. Singer G, Kurman RJ, Chang H-W, Cho SK, Shih I-M. Diverse tumorigenic pathways in ovarian serous carcinoma. Am J Pathol. 2002;160(4):1223–8.

    Article  CAS  Google Scholar 

  29. Martinez K, Estevez M-C, Wu Y, Phillips JA, Medley CD, Tan W. Locked nucleic acid based beacons for surface interaction studies and biosensor development. Anal Chem. 2009;81(9):3448–54.

    Article  CAS  Google Scholar 

  30. Liu X, Tan W. A fiber-optic evanescent wave DNA biosensor based on novel molecular beacons. Anal Chem. 1999;71(22):5054–9.

    Article  CAS  Google Scholar 

  31. Qiu L-P, Wu Z-S, Shen G-L, Yu R-Q. Highly sensitive and selective bifunctional oligonucleotide probe for homogeneous parallel fluorescence detection of protein and nucleotide sequence. Anal Chem. 2011;83(8):3050–7.

    Article  CAS  Google Scholar 

  32. Hu J, Wen C-Y, Zhang Z-L, Xie M, Hu J, Wu M, et al. Optically encoded multifunctional nanospheres for one-pot separation and detection of multiplex DNA sequences. Anal Chem. 2013;85(24):11929–35.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (NSFC) (grant no: 21275002), Zhejiang Province Natural Science Foundation of China (LY16C07002), and Independent Research Project of State Key Laboratory of Photocatalysis on Energy and Environment (No. 2014CO1).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuedong Wang or Zhifa Shen.

Ethics declarations

Conflict of interest

The authors have declared that no competing interest exists.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 350 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Zhang, R., Li, F. et al. Double-hairpin molecular-beacon-based amplification detection for gene diagnosis linked to cancer. Anal Bioanal Chem 408, 6181–6188 (2016). https://doi.org/10.1007/s00216-016-9729-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9729-z

Keywords

Navigation