Skip to main content
Log in

Site-specific analysis of advanced glycation end products in plasma proteins of type 2 diabetes mellitus patients

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Advanced glycation end products (AGEs) are posttranslational modifications formed non-enzymatically from the reaction of carbohydrates and their degradation products with proteins. Accumulation of AGEs is associated with the progression of severe diabetic complications, for example, and elevated tissue levels of AGEs might even predict these pathologies. As AGE formation is often site-specific, mapping of these modification sites may reveal more sensitive and specific markers than the global tissue level. Here, 42 AGE modifications were identified in a bottom-up proteomic approach by tandem mass spectrometry, which corresponded to 36 sites in 22 high to medium abundant proteins in individual plasma samples obtained from type 2 diabetes mellitus (T2DM) patients with long disease duration (>10 years). Major modifications were glarg (11 modification sites) and carboxymethylation (5) of arginine and formylation (8), acetylation (7), and carboxymethylation (7) of lysine residues. Relative quantification of these sites in plasma samples obtained from normoglycemic individuals (n = 47) and patients with T2DM being newly diagnosed (n = 47) or of medium (2–5 years, n = 20) and long disease duration (>10 years, n = 20) did not reveal any significant differences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ulrich P, Cerami A. Protein glycation, diabetes, and aging. Recent Prog Horm Res. 2001;56:1. Vol 56.

    Article  CAS  Google Scholar 

  2. Schalkwijk CG, Stehouwer CDA, van Hinsbergh VWM. Fructose-mediated non-enzymatic glycation: sweet coupling or bad modification. Diabetes Metab Res Rev. 2004;20:369–82.

    Article  CAS  Google Scholar 

  3. Wolff SP, Dean RT. Glucose autoxidation and protein modification—the potential role of autoxidative glycosylation in diabetes. Biochem J. 1987;245:243.

    Article  CAS  Google Scholar 

  4. Niyatishrikhodaee F, Shibamoto T. Gas-chromatographic analysis of glyoxal and methylglyoxal formed from lipids and related-compounds upon ultraviolet-irradiation. J Agric Food Chem. 1993;41:227–30.

    Article  Google Scholar 

  5. Ray M, Ray S. Aminoacetone oxidase from goat liver—formation of methylglyoxal from aminoacetone. J Biol Chem. 1987;262:5974.

    CAS  Google Scholar 

  6. Ahmed MU, Thorpe SR, Baynes JW. Identification of N-epsilon-carboxymethyllysine as a degradation product of fructoselysine in glycated protein. J Biol Chem. 1986;261:4889–94.

    CAS  Google Scholar 

  7. Akira K, Hashimoto T. Use of C-13 labeling and NMR spectroscopy for the investigation of degradation pathways of Amadori compounds. Biol Pharm Bull. 2005;28:344.

    Article  CAS  Google Scholar 

  8. Smuda M, Henning C, Raghavan CT, Johar K, Vasavada AR, Nagaraj RH, et al. Comprehensive analysis of maillard protein modifications in human lenses: effect of age and cataract. Biochemistry. 2015;54:2500–7.

    Article  CAS  Google Scholar 

  9. Schleicher ED, Wagner E, Nerlich AG. Increased accumulation of the glycoxidation product N-epsilon(carboxymethyl)lysine in human tissues in diabetes and aging. J Clin Invest. 1997;99:457–68.

    Article  CAS  Google Scholar 

  10. Ahmed N, Thornalley PJ. Advanced glycation endproducts: what is their relevance to diabetic complications? Diabetes Obes Metab. 2007;9:233–45.

    Article  CAS  Google Scholar 

  11. Flores-Morales P, Diema C, Vilaseca M, Estelrich J, Luque FJ, Gutierrez-Oliva S, et al. Enhanced reactivity of Lys182 explains the limited efficacy of biogenic amines in preventing the inactivation of glucose-6-phosphate dehydrogenase by methylglyoxal. Bioorg Med Chem. 2011;19:1613–22.

    Article  CAS  Google Scholar 

  12. Bron AJ, Sparrow J, Brown NAP, Harding JJ, Blakytny R. The lens in diabetes. Eye. 1993;7:260–75.

    Article  Google Scholar 

  13. Sell DR, Monnier VM. Molecular basis of arterial stiffening: role of glycation—a mini-review. Gerontology. 2012;58:227–37.

    Article  CAS  Google Scholar 

  14. Basta G, Schmidt AM, De Caterina R. Advanced glycation end products and vascular inflammation: implications for accelerated atherosclerosis in diabetes. Cardiovasc Res. 2004;63:582.

    Article  CAS  Google Scholar 

  15. Mitsuhashi T, Vlassara H, Founds HW, Li YM. Standardizing the immunological measurement of advanced glycation endproducts using normal human serum. J Immunol Methods. 1997;207:79–88.

    Article  CAS  Google Scholar 

  16. Horiuchi S, Araki N, Morino Y. Immunochemical approach to characterize advanced glycation end-products of the maillard reaction—evidence for the presence of a common structure. J Biol Chem. 1991;266:7329–32.

    CAS  Google Scholar 

  17. Hasenkopf K, Ronner B, Hiller H, Pischetsrieder M. Analysis of glycated and ascorbylated proteins by gas chromatography-mass spectrometry. J Agric Food Chem. 2002;50:5697–703.

    Article  CAS  Google Scholar 

  18. Ahmed N, Thornalley PJ. Chromatographic assay of glycation adducts in human serum albumin glycated in vitro by derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl-carbamate and intrinsic fluorescence. Biochem J. 2002;364:15.

    Article  CAS  Google Scholar 

  19. Babaei-Jadidi R, Karachalias N, Ahmed N, Battah S, Thornalley PJ. Prevention of incipient diabetic nephropathy by high-dose thiamine and benfotiamine. Diabetes. 2003;52:2110–20.

    Article  CAS  Google Scholar 

  20. Venkatraman J, Aggarwal K, Balaram P. Helical peptide models for protein glycation: proximity effects in catalysis of the Amadori rearrangement. Chem Biol. 2001;8:611.

    Article  CAS  Google Scholar 

  21. Frolov A, Blueher M, Hoffmann R. Glycation sites of human plasma proteins are affected to different extents by hyperglycemic conditions in type 2 diabetes mellitus. Anal Bioanal Chem. 2014;406:5755–63.

    Article  CAS  Google Scholar 

  22. Zhang Q, Monroe ME, Schepmoes AA, Clauss TRW, Gritsenko MA, Meng D, et al. Comprehensive identification of glycated peptides and their glycation motifs in plasma and erythrocytes of control and diabetic subjects. J Proteome Res. 2011;10:3076.

    Article  CAS  Google Scholar 

  23. Greifenhagen U, Frolov A, Hoffmann R. Oxidative degradation of N (epsilon)-fructosylamine-substituted peptides in heated aqueous systems. Amino Acids. 2015;47:1065–76.

    Article  CAS  Google Scholar 

  24. Distler L, Georgieva A, Kenkel I, Huppert J, Pischetsrieder M. Structure- and concentration-specific assessment of the physiological reactivity of alpha-dicarbonyl glucose degradation products in peritoneal dialysis fluids. Chem Res Toxicol. 2014;27:1421–30.

    Article  CAS  Google Scholar 

  25. Bertoletti L, Regazzoni L, Altomare A, Colombo R, Colzani M, Vistoli G, et al. Advanced glycation end products of beta(2)-microglobulin in uremic patients as determined by high resolution mass spectrometry. J Pharm Biomed Anal. 2014;91:193–201.

    Article  CAS  Google Scholar 

  26. Wilmarth PA, Tanner S, Dasari S, Nagalla SR, Riviere MA, Bafna V, et al. Age-related changes in human crystallins determined from comparative analysis of post-translational modifications in young and aged lens: does deamidation contribute to crystallin insolubility? J Proteome Res. 2006;5:2554–66.

    Article  CAS  Google Scholar 

  27. Greifenhagen U, Frolov A, Blueher M, Hoffmann R. Plasma proteins modified by advanced glycation endproducts (AGEs) reveal site-specific susceptibilities to glycemic control in patients with type 2 diabetes. J Biol Chem. 2016;291:9610–6.

  28. Gavin JR, Alberti KGMM, Davidson MB, DeFronzo RA, Drash A, Gabbe SG, et al. Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care. 2000;23:S4–19.

    Google Scholar 

  29. Kloeting N, Fasshauer M, Dietrich A, Kovacs P, Schoen MR, Kern M, et al. Insulin-sensitive obesity. Am J Physiol Metab. 2010;299:E506–15.

    Article  CAS  Google Scholar 

  30. Kannt A, Pfenninger A, Teichert L, Toenjes A, Dietrich A, Schon MR, et al. Association of nicotinamide-N-methyltransferase mRNA expression in human adipose tissue and the plasma concentration of its product, 1-methylnicotinamide, with insulin resistance. Diabetologia. 2015;58:799–808.

    Article  CAS  Google Scholar 

  31. Bradford MM. Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal Biochem. 1976;72:248–54.

    Article  CAS  Google Scholar 

  32. Kuzyk MA, Smith D, Yang J, Cross TJ, Jackson AM, Hardie DB, et al. Multiple reaction monitoring-based, multiplexed, absolute quantitation of 45 proteins in human plasma. Mol Cell Proteomics. 2009;8:1860–77.

    Article  CAS  Google Scholar 

  33. Farrah T, Deutsch EW, Omenn GS, Campbell DS, Sun Z, Bletz JA, Mallick P, Katz JE, Malmstrom J, Ossola R, Watts JD, Lin BAY, Zhang H, Moritz RL, Aebersold R. A high-confidence human plasma proteome reference set with estimated concentrations in peptide atlas. Mol. Cell Proteomics. 2011;10:M110.006353.

  34. Wolters DA, Washburn MP, Yates JR. An automated multidimensional protein identification technology for shotgun proteomics. Anal Chem. 2001;73:5683–90.

    Article  CAS  Google Scholar 

  35. Oberg AL, Vitek O. Statistical design of quantitative mass spectrometry-based proteomic experiments. J Proteome Res. 2009;8:2144–56.

    Article  CAS  Google Scholar 

  36. Thornalley PJ, Battah S, Ahmed N, Karachalias N, Agalou S, Babaei-Jadidi R, et al. Quantitative screening of advanced glycation endproducts in cellular and extracellular proteins by tandem mass spectrometry. Biochem J. 2003;375:581.

    Article  CAS  Google Scholar 

  37. Malmstroem J, Lee H, Aebersold R. Advances in proteomic workflows for systems biology. Curr Opin Biotechnol. 2007;18:378–84.

    Article  CAS  Google Scholar 

  38. Odani H, Iijima K, Nakata M, Miyata S, Kusunoki H, Yasuda Y, et al. Identification of N-omega-carboxymethylarginine, a new advanced glycation endproduct in serum proteins of diabetic patients: possibility of a new marker of aging and diabetes. Biochem Biophys Res Commun. 2001;285:1232–6.

    Article  CAS  Google Scholar 

  39. Odani H, Shinzato T, Matsumoto Y, Takai I, Nakai S, Miwa M, et al. First evidence for accumulation of protein-bound and protein-free pyrraline in human uremic plasma by mass spectrometry. Biochem Biophys Res Commun. 1996;224:237–41.

    Article  CAS  Google Scholar 

  40. Usui T, Shimohira K, Watanabe H, Hayase F. Detection and determination of glyceraldehyde-derived pyridinium-type advanced glycation end product in streptozotocin-induced diabetic rats. Biosci Biotechnol Biochem. 2007;71:442.

    Article  CAS  Google Scholar 

  41. Schmidt R, Boehme D, Singer D, Frolov A. Specific tandem mass spectrometric detection of AGE-modified arginine residues in peptides. J Mass Spectrom. 2015;50:613–24.

    Article  CAS  Google Scholar 

  42. Henning C, Smuda M, Girndt M, Ulrich C, Glomb MA. Molecular basis of maillard amide-advanced glycation end product (AGE) formation in vivo. J Biol Chem. 2011;286:44350.

    Article  CAS  Google Scholar 

  43. Liyasova MS, Schopfer LM, Lockridge O. Reaction of human albumin with aspirin in vitro: mass spectrometric identification of acetylated lysines 199, 402, 519, and 545. Biochem Pharmacol. 2010;79:784–91.

    Article  CAS  Google Scholar 

  44. Finamore F, Priego-Capote F, Nolli S, Zufferey A, Fontana P, Sanchez JC. Characterisation of the influences of aspirin-acetylation and glycation on human plasma proteins. J Proteome. 2015;114:125–35.

    Article  CAS  Google Scholar 

  45. Greifenhagen U, Nguyen VD, Moschner J, Giannis A, Frolov A, Hoffmann R. Sensitive and site-specific identification of carboxymethylated and carboxyethylated peptides in tryptic digests of proteins and human plasma. J Proteome Res. 2016.

  46. Korwar AM, Vannuruswamy G, Jagadeeshaprasad MG, Jayaramaiah RH, Bhat S, Regin BS, et al. Development of diagnostic fragment ion library for glycated peptides of human serum albumin: targeted quantification in prediabetic, diabetic, and microalbuminuria plasma by parallel reaction monitoring, SWATH, and MSE. Mol Cell Proteomics. 2015;14:2150–9.

    Article  CAS  Google Scholar 

  47. Kimzey MJ, Kinsky OR, Yassine HN, Tsaprailis G, Stump CS, Monks TJ, et al. Site specific modification of the human plasma proteome by methylglyoxal. Toxicol Appl Pharmacol. 2015;289:155–62.

    Article  CAS  Google Scholar 

  48. Zhang Q, Tang N, Schepmoes AA, Phillips LS, Smith RD, Metz TO. Proteomic profiling of nonenzymatically glycated proteins in human plasma and erythrocyte membranes. J Proteome Res. 2008;7:2025–32.

    Article  CAS  Google Scholar 

  49. Kilhovd BK, Giardino I, Torjesen PA, Birkeland KI, Berg TJ, Thornalley PJ, et al. Increased serum levels of the specific AGE-compound methylglyoxal-derived hydroimidazolone in patients with type 2 diabetes. Metab Exp. 2003;52:163–7.

    Article  CAS  Google Scholar 

  50. Teerlink T, Barto R, Ten Brink HJ, Schalkwijk CG. Measurement of N-epsilon-(carboxymethyl)lysine and N-epsilon-(carboxyethyl)lysine in human plasma protein by stable-isotope-dilution tandem mass spectrometry. Clin Chem. 2004;50:1222.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Sandro Spiller and Dr. Ravi Chand Bollineni for assisting parallel sample processing. Funding from the Deutsche Forschungsgemeinschaft (DFG, grant number HO-2222/7-1 to RH) and a PhD scholarship from the Ernst Schering Foundation to UG are gratefully acknowledged.

Author contributions

Uta Greifenhagen conducted the experiments, data analysis, and interpretation and wrote the manuscript together with Ralf Hoffmann. Andrej Frolov contributed to sample preparation and the experimental design. Matthias Blüher designed the cohorts and provided the plasma samples. Ralf Hoffmann initiated the project, contributed to data interpretation, and wrote the manuscript together with Uta Greifenhagen. All the authors reviewed and agreed upon the final version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Hoffmann.

Ethics declarations

The study was approved by the Ethics Committee of Universität Leipzig (approval no: 159-12-21052012) and performed in accordance with the Declaration of Helsinki. All the subjects gave written informed consent before taking part in this study.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 281 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Greifenhagen, U., Frolov, A., Blüher, M. et al. Site-specific analysis of advanced glycation end products in plasma proteins of type 2 diabetes mellitus patients. Anal Bioanal Chem 408, 5557–5566 (2016). https://doi.org/10.1007/s00216-016-9651-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9651-4

Keywords

Navigation