Skip to main content

Advertisement

Log in

Post-SELEX optimization of aptamers

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Aptamers are functional single-stranded DNA or RNA oligonucleotides, selected in vitro by SELEX (Systematic Evolution of Ligands by Exponential Enrichment), which can fold into stable unique three-dimensional structures that bind their target ligands with high affinity and specificity. Although aptamers show a number of favorable advantages such as better stability and easier modification when compared with the properties of antibodies, only a handful of aptamers have entered clinical trials and only one, pegaptanib, has received US Food and Drug Administration approval for clinical use. The main reasons that limit the practical application of aptamers are insufficient nuclease stability, bioavailability, thermal stability, or even affinity. Some aptamers obtained from modified libraries show better properties; however, polymerase amplification of nucleic acids containing non-natural bases is currently a primary drawback of the SELEX process. This review focuses on several post-SELEX optimization strategies of aptamers identified in recent years. We describe four common methods in detail: truncation, chemical modification, bivalent or multivalent aptamer construction, and mutagenesis. We believe that these optimization strategies should improve one or more specific properties of aptamers, and the type of feature(s) selected for improvement will be dependent on the application purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Shigdar S, Macdonald J, O’Connor M, Wang T, Xiang DX, Al Shamaileh H, et al. Aptamers as theranostic agents: modifications, serum stability and functionalisation. Sensors (Basel). 2013;13(10):13624–37. doi:10.3390/s131013624.

    Article  CAS  Google Scholar 

  2. Wang RE, Wu H, Niu Y, Cai J. Improving the stability of aptamers by chemical modification. Curr Med Chem. 2011;18(27):4126–38.

    Article  CAS  Google Scholar 

  3. Radom F, Jurek PM, Mazurek MP, Otlewski J, Jelen F. Aptamers: molecules of great potential. Biotechnol Adv. 2013;31(8):1260–74. doi:10.1016/j.biotechadv.2013.04.007.

    Article  CAS  Google Scholar 

  4. Shigdar S, Macdonald J, O’Connor M, Wang T, Xiang D, Al Shamaileh H, et al. Aptamers as theranostic agents: modifications, serum stability and functionalisation. Sensors. 2013;13(10):13624–37. doi:10.3390/s131013624.

    Article  CAS  Google Scholar 

  5. Griffin LC, Tidmarsh GF, Bock LC, Toole JJ, Leung LL. In vivo anticoagulant properties of a novel nucleotide-based thrombin inhibitor and demonstration of regional anticoagulation in extracorporeal circuits. Blood. 1993;81(12):3271–6.

    CAS  Google Scholar 

  6. Lapa SA, Chudinov AV, Timofeev EN. The toolbox for modified aptamers. Mol Biotechnol. 2015. doi:10.1007/s12033-015-9907-9.

    Google Scholar 

  7. McKeague M, Derosa MC. Challenges and opportunities for small molecule aptamer development. J Nucleic Acids. 2012;2012:748913. doi:10.1155/2012/748913.

    Article  Google Scholar 

  8. Eaton BE, Gold L, Hicke BJ, Janjic N, Jucker FM, Sebesta DP, et al. Post-SELEX combinatorial optimization of aptamers. Bioorg Med Chem. 1997;5(6):1087–96.

    Article  CAS  Google Scholar 

  9. Djordjevic M. SELEX experiments: new prospects, applications and data analysis in inferring regulatory pathways. Biomol Eng. 2007;24(2):179–89. doi:10.1016/j.bioeng.2007.03.001.

    Article  CAS  Google Scholar 

  10. Kato Y, Minakawa N, Komatsu Y, Kamiya H, Ogawa N, Harashima H, et al. New NTP analogs: the synthesis of 4′-thioUTP and 4′-thioCTP and their utility for SELEX. Nucleic Acids Res. 2005;33(9):2942–51. doi:10.1093/nar/gki578.

    Article  CAS  Google Scholar 

  11. Pasternak A, Hernandez FJ, Rasmussen LM, Vester B, Wengel J. Improved thrombin binding aptamer by incorporation of a single unlocked nucleic acid monomer. Nucleic Acids Res. 2011;39(3):1155–64. doi:10.1093/nar/gkq823.

    Article  CAS  Google Scholar 

  12. Cowperthwaite MC, Ellington AD. Bioinformatic analysis of the contribution of primer sequences to aptamer structures. J Mol Evol. 2008;67(1):95–102. doi:10.1007/s00239-008-9130-4.

  13. Zheng X, Hu B, Gao SX, Liu DJ, Sun MJ, Jiao BH, et al. A saxitoxin-binding aptamer with higher affinity and inhibitory activity optimized by rational site-directed mutagenesis and truncation. Toxicon. 2015;101:41–7. doi:10.1016/j.toxicon.2015.04.017.

    Article  CAS  Google Scholar 

  14. Gao S, Hu B, Zheng X, Cao Y, Liu D, Sun M, et al. Gonyautoxin 1/4 aptamers with high-affinity and high-specificity: from efficient selection to aptasensor application. Biosens Bioelectron. 2016;79:938–44. doi:10.1016/j.bios.2016.01.032.

    Article  CAS  Google Scholar 

  15. Nadal P, Svobodova M, Mairal T, O'Sullivan CK. Probing high-affinity 11-mer DNA aptamer against Lup an 1 (beta-conglutin). Anal Bioanal Chem. 2013;405(29):9343–9. doi:10.1007/s00216-013-7385-0.

    Article  CAS  Google Scholar 

  16. Sung HJ, Choi S, Lee JW, Ok CY, Bae YS, Kim YH, et al. Inhibition of human neutrophil activity by an RNA aptamer bound to interleukin-8. Biomaterials. 2014;35(1):578–89. doi:10.1016/j.biomaterials.2013.09.107.

    Article  CAS  Google Scholar 

  17. Shangguan D, Tang Z, Mallikaratchy P, Xiao Z, Tan W. Optimization and modifications of aptamers selected from live cancer cell lines. Chembiochem. 2007;8(6):603–6. doi:10.1002/cbic.200600532.

    Article  CAS  Google Scholar 

  18. Kong HY, Byun J. Nucleic acid aptamers: new methods for selection, stabilization, and application in biomedical science. Biomol Ther. 2013;21(6):423–34. doi:10.4062/biomolther.2013.085.

    Article  Google Scholar 

  19. Elmen J, Lindow M, Schutz S, Lawrence M, Petri A, Obad S, et al. LNA-mediated microRNA silencing in non-human primates. Nature. 2008;452(7189):896–9. doi:10.1038/nature06783.

    Article  CAS  Google Scholar 

  20. Lanford RE, Hildebrandt-Eriksen ES, Petri A, Persson R, Lindow M, Munk ME, et al. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science. 2010;327(5962):198–201. doi:10.1126/science.1178178.

    Article  CAS  Google Scholar 

  21. Lee KY, Kang H, Ryu SH, Lee DS, Lee JH, Kim S. Bioimaging of nucleolin aptamer-containing 5-(N-benzylcarboxyamide)-2′-deoxyuridine more capable of specific binding to targets in cancer cells. J Biomed Biotechnol. 2010. doi:10.1155/2010/168306.

    Google Scholar 

  22. Yamamoto T, Nakatani M, Narukawa K, Obika S. Antisense drug discovery and development. Future Med Chem. 2011;3(3):339–65. doi:10.4155/fmc.11.2.

    Article  CAS  Google Scholar 

  23. King DJ, Ventura DA, Brasier AR, Gorenstein DG. Novel combinatorial selection of phosphorothioate oligonucleotide aptamers. Biochemistry. 1998;37(47):16489–93. doi:10.1021/bi981780f.

    Article  CAS  Google Scholar 

  24. Nimjee SM, Rusconi CP, Sullenger BA. Aptamers: an emerging class of therapeutics. Annu Rev Med. 2005;56:555–83. doi:10.1146/annurev.med.56.062904.144915.

    Article  CAS  Google Scholar 

  25. Reinemann C, Strehlitz B. Aptamer-modified nanoparticles and their use in cancer diagnostics and treatment. Swiss Med Wkly. 2014;144:w13908. doi:10.4414/smw.2014.13908.

  26. Wang J, Li G. Aptamers against cell surface receptors: selection, modification and application. Curr Med Chem. 2011;18(27):4107–16.

    Article  CAS  Google Scholar 

  27. Dhakal S, Yu Z, Konik R, Cui Y, Koirala D, Mao H. G-quadruplex and i-motif are mutually exclusive in ILPR double-stranded DNA. Biophys J. 2012;102(11):2575–84. doi:10.1016/j.bpj.2012.04.024.

    Article  CAS  Google Scholar 

  28. Tatarinova O, Tsvetkov V, Basmanov D, Barinov N, Smirnov I, Timofeev E, et al. Comparison of the ‘chemical’ and ‘structural’ approaches to the optimization of the thrombin-binding aptamer. PloS One. 2014;9(2):e89383. doi:10.1371/journal.pone.0089383.

    Article  Google Scholar 

  29. Schmidt KS, Borkowski S, Kurreck J, Stephens AW, Bald R, Hecht M, et al. Application of locked nucleic acids to improve aptamer in vivo stability and targeting function. Nucleic Acids Res. 2004;32(19):5757–65. doi:10.1093/nar/gkh862.

    Article  CAS  Google Scholar 

  30. Mallikaratchy PR, Ruggiero A, Gardner JR, Kuryavyi V, Maguire WF, Heaney ML, et al. A multivalent DNA aptamer specific for the B-cell receptor on human lymphoma and leukemia. Nucleic Acids Res. 2011;39(6):2458–69. doi:10.1093/nar/gkq996.

    Article  CAS  Google Scholar 

  31. Kim Y, Cao Z, Tan W. Molecular assembly for high-performance bivalent nucleic acid inhibitor. Proc Natl Acad Sci U S A. 2008;105(15):5664–9. doi:10.1073/pnas.0711803105.

    Article  CAS  Google Scholar 

  32. Nonaka Y, Yoshida W, Abe K, Ferri S, Schulze H, Bachmann TT, et al. Affinity improvement of a VEGF aptamer by in silico maturation for a sensitive VEGF-detection system. Anal Chem. 2013;85(2):1132–7. doi:10.1021/ac303023d.

    Article  CAS  Google Scholar 

  33. Muller J, Freitag D, Mayer G, Potzsch B. Anticoagulant characteristics of HD1-22, a bivalent aptamer that specifically inhibits thrombin and prothrombinase. J Thromb Haemost. 2008;6(12):2105–12. doi:10.1111/j.1538-7836.2008.03162.x.

    Article  CAS  Google Scholar 

  34. Musumeci D, Montesarchio D. Polyvalent nucleic acid aptamers and modulation of their activity: a focus on the thrombin binding aptamer. Pharmacol Ther. 2012;136(2):202–15. doi:10.1016/j.pharmthera.2012.07.011.

    Article  CAS  Google Scholar 

  35. Kim Y, Dennis DM, Morey T, Yang L, Tan WH. Engineering dendritic aptamer assemblies as superior inhibitors of protein function. Chem-Asian J. 2010;5(1):56–9. doi:10.1002/asia.200900421.

    Article  CAS  Google Scholar 

  36. Zhao X, Lis JT, Shi H. A systematic study of the features critical for designing a high avidity multivalent aptamer. Nucleic Acid Ther. 2013;23(3):238–42. doi:10.1089/nat.2012.0410.

    Article  CAS  Google Scholar 

  37. Bullock TL, Sherlin LD, Perona JJ. Tertiary core rearrangements in a tight binding transfer RNA aptamer. Nat Struct Biol. 2000;7(6):497–504. doi:10.1038/75910.

    Article  CAS  Google Scholar 

  38. Cho JS, Lee SW. Sequence and structural features of RNA aptamer against myasthenic autoantibodies. Oligonucleotides. 2009;19(3):273–80. doi:10.1089/oli.2009.0201.

    Article  CAS  Google Scholar 

  39. Moore MD, Cookson J, Coventry VK, Sproat B, Rabe L, Cranston RD, et al. Protection of HIV neutralizing aptamers against rectal and vaginal nucleases: implications for RNA-based therapeutics. J Biol Chem. 2011;286(4):2526–35. doi:10.1074/jbc.M110.178426.

    Article  CAS  Google Scholar 

  40. Hoshika S, Minakawa N, Matsuda A. Synthesis and physical and physiological properties of 4′-thioRNA: application to post-modification of RNA aptamer toward NF-kappaB. Nucleic Acids Res. 2004;32(13):3815–25. doi:10.1093/nar/gkh705.

    Article  CAS  Google Scholar 

  41. Kaur H, Li JJ, Bay BH, Yung LY. Investigating the antiproliferative activity of high affinity DNA aptamer on cancer cells. PLoS One. 2013;8(1):e50964. doi:10.1371/journal.pone.0050964.

    Article  CAS  Google Scholar 

  42. Pedersen EB, Nielsen JT, Nielsen C, Filichev VV. Enhanced anti-HIV-1 activity of G-quadruplexes comprising locked nucleic acids and intercalating nucleic acids. Nucleic Acids Res. 2011;39(6):2470–81. doi:10.1093/nar/gkq1133.

    Article  CAS  Google Scholar 

  43. Forster C, Zydek M, Rothkegel M, Wu Z, Gallin C, Gessner R, et al. Properties of an LNA-modified ricin RNA aptamer. Biochem Biophys Res Commun. 2012;419(1):60–5. doi:10.1016/j.bbrc.2012.01.127.

    Article  Google Scholar 

  44. Kolb G, Reigadas S, Boiziau C, van Aerschot A, Arzumanov A, Gait MJ, et al. Hexitol nucleic acid-containing aptamers are efficient ligands of HIV-1 TAR RNA. Biochemistry. 2005;44(8):2926–33. doi:10.1021/bi048393s.

    Article  CAS  Google Scholar 

  45. Reinemann C, Strehlitz B. Aptamer-modified nanoparticles and their use in cancer diagnostics and treatment. Swiss Med Wkly. 2014;144:w13908. doi:10.4414/smw.2014.13908.

    Google Scholar 

  46. Shiang YC, Huang CC, Wang TH, Chien CW, Chang HT. Aptamer-conjugated nanoparticles efficiently control the activity of thrombin. Adv Funct Mater. 2010;20(18):3175–82. doi:10.1002/adfm.201000642.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Professor Jiao and Professor Wang for guidance and review of the manuscript and the National High-Tech Research and Development Program of China for funding this work (2013AA092904).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Binghua Jiao or Lianghua Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Shunxiang Gao and Xin Zheng contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, S., Zheng, X., Jiao, B. et al. Post-SELEX optimization of aptamers. Anal Bioanal Chem 408, 4567–4573 (2016). https://doi.org/10.1007/s00216-016-9556-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9556-2

Keywords

Navigation