Skip to main content

Advertisement

Log in

Identification of aquatically available carbon from algae through solution-state NMR of whole 13C-labelled cells

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Green algae and cyanobacteria are primary producers with profound impact on food web functioning. Both represent key carbon sources and sinks in the aquatic environment, helping modulate the dissolved organic matter balance and representing a potential biofuel source. Underlying the impact of algae and cyanobacteria on an ecosystem level is their molecular composition. Herein, intact 13C-labelled whole cell suspensions of Chlamydomonas reinhardtii, Chlorella vulgaris and Synechocystis were studied using a variety of 1D and 2D 1H/13C solution-state nuclear magnetic resonance (NMR) spectroscopic experiments. Solution-state NMR spectroscopy of whole cell suspensions is particularly relevant as it identifies species that are mobile (dissolved or dynamic gels), ‘aquatically available’ and directly contribute to the aquatic carbon pool upon lysis, death or become a readily available food source on consumption. In this study, a wide range of metabolites and structural components were identified within the whole cell suspensions. In addition, significant differences in the lipid/triacylglyceride (TAG) content of green algae and cyanobacteria were confirmed. Mobile species in algae are quite different from those in abundance in ‘classic’ dissolved organic matter (DOM) indicating that if algae are major contributors to DOM, considerable selective preservation of minor components (e.g. sterols) or biotransformation would have to occur. Identifying the metabolites and dissolved components within algal cells by NMR permits future studies of carbon transfer between species and through the food chain, whilst providing a foundation to better understand the role of algae in the formation of DOM and the sequestration/transformation of carbon in aquatic environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Paerl HW, Xu H, McCarthy MJ, Zhu G, Qin B, Li Y, et al. Controlling harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake Taihu, China): the need for a dual nutrient (N & P) management strategy. Water Res. 2011;45:1973–83.

    Article  CAS  Google Scholar 

  2. Piorreck M, Baasch K-H, Pohl P. Biomass production, total protein, chlorophylls, lipids and fatty acids of freshwater green and blue-green algae under different nitrogen regimes. Phytochemistry. 1984;23:207–16.

    Article  CAS  Google Scholar 

  3. Martin-Creuzburg D, Wacker A, von Elert E. Life history consequences of sterol availability in the aquatic keystone species Daphnia. Oecologia. 2005;144:362–72.

    Article  Google Scholar 

  4. Bednarska A, Slusarczyk M. Effect of non-toxic, filamentous cyanobacteria on egg abortion in Daphnia under various thermal conditions. Hydrobiologia. 2013;715:151–7.

    Article  CAS  Google Scholar 

  5. Perhar G, Arhonditsis GB, Brett MT. Modelling the role of highly unsaturated fatty acids in planktonic food web processes: a mechanistic approach. Environ Rev. 2012;20:155–72.

    Article  Google Scholar 

  6. Lam B, Baer A, Alaee M, Lefebvre B, Moser A, Williams A, et al. Major structural components in freshwater dissolved organic matter. Environ Sci Technol. 2007;41:8240–7.

    Article  CAS  Google Scholar 

  7. Demirbas A, Fatih DM. Importance of algae oil as a source of biodiesel. Energy Convers Manag. 2011;52:163–70.

    Article  Google Scholar 

  8. Griffiths MJ, Harrison STL. Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol. 2009;21:493–507.

    Article  CAS  Google Scholar 

  9. Scott SA, Davey MP, Dennis JS, Horst I, Howe CJ, Lea-Smith DJ, et al. Biodiesel from algae: challenges and prospects. Curr Opin Biotechnol. 2010;21:277–86.

    Article  CAS  Google Scholar 

  10. Wahlen BD, Willis RM, Seefeldt LC. Biodiesel production by simultaneous extraction and conversion of total lipids from microalgae, cyanobacteria, and wild mixed-cultures. Bioresour Technol. 2011;102:2724–30.

    Article  CAS  Google Scholar 

  11. Radakovits R, Jinkerson RE, Darzins A, Posewitz MC. Genetic engineering of algae for enhanced biofuel production. Eukaryot Cell. 2010;9:486–501.

    Article  CAS  Google Scholar 

  12. Bolling C, Fiehn O. Metabolite profiling of Chlamydomonas reinhardtii under nutrient deprivation. Plant Physiol. 2005;139:1995–2005.

    Article  Google Scholar 

  13. Madsen AD, Goessler W, Pedersen SN, Francesconi KA. Characterization of an algal extract by HPLC-ICP-MS and LC-electrospray MS for use in arsenosugar speciation studies. J Anal At Spectrom. 2000;15:657–62.

    Article  CAS  Google Scholar 

  14. Halket JM, Waterman D, Przyborowska AM, Patel RKP, Fraser PD, Bramley PM. Chemical derivatization and mass spectral libraries in metabolic profiling by GC/MS and LC/MS/MS. J Exp Bot. 2004;56:219–43.

    Article  Google Scholar 

  15. Aguilar JA, Cassani J, Delbianco M, Adams RW, Nilsson M, Morris GA. Minimising research bottlenecks by decluttering NMR spectra. Chem Eur J. 2015;21:6623–30.

    Article  CAS  Google Scholar 

  16. Gupta V, Thakur RS, Reddy CRK, Jha B. Central metabolic processes of marine macrophytic algae revealed from NMR based metabolome analysis. RSC Adv. 2013;3:7037–47.

    Article  CAS  Google Scholar 

  17. Pandit A, Morosinotto T, Reus M, Holzwarth AR, Bassi R, de Groot HJM. First solid-state NMR analysis of uniformly 13C-enriched major light-harvesting complexes from Chlamydomonas reinhardtii and identification of protein and cofactor spin clusters. Biochim Biophys Acta Bioenerg. 1807;2011:437–43.

    Google Scholar 

  18. Arnold AA, Genard B, Zito F, Tremblay R, Warschawski DE, Marcotte I. Identification of lipid and saccharide constituents of whole microalgal cells by 13C solid-state NMR. Biochim Biophys Acta. 1848;2015:369–77.

    Google Scholar 

  19. Chauton MS, Optun OI, Bathen TF, Volent Z, Gribbestad IS. HR MAS 1H NMR spectroscopy analysis of marine microalgal whole cells. Mar Ecol Prog Ser. 2003;256:57–62.

    Article  CAS  Google Scholar 

  20. Chauton MS, Røvik Størseth T, Johnsen G. High-resolution magic angle spinning 1H NMR analysis of whole cells of Thalassiosira pseudonana (Bacillariophyceae): broad range analysis of metabolic composition and nutritional value. J Appl Phycol. 2003;15:533–42.

    Article  Google Scholar 

  21. Chauton MS, Størseth TR, Krane J. High-resolution magic angle spinning NMR analysis of whole cells of Chaetoceros muelleri (Bacillariophyceae) and comparison with 13C-NMR and distortionless enhancement by polarization transfer 13C-NMR analysis of lipophilic extracts. J Phycol. 2004;40:611–8.

    Article  CAS  Google Scholar 

  22. Simpson AJ, Simpson MJ, Soong R. Nuclear magnetic resonance spectroscopy and its key role in environmental research. Environ Sci Technol. 2012;46:11488–96.

    Article  CAS  Google Scholar 

  23. Lam B, Simpson AJ. Direct 1H NMR spectroscopy of dissolved organic matter in natural waters. Analyst. 2008;133:263–9.

    Article  CAS  Google Scholar 

  24. Wu DH, Chen AD, Johnson CS. An improved diffusion-ordered spectroscopy experiment incorporating bipolar-gradient pulses. J Magn Reson Ser A. 1995;115:260–4.

    Article  CAS  Google Scholar 

  25. Courtier-Murias D, Farooq H, Masoom H, Botana A, Soong R, Longstaffe JG, et al. Comprehensive multiphase NMR spectroscopy: basic experimental approaches to differentiate phases in heterogeneous samples. J Magn Reson. 2012;217:61–76.

    Article  CAS  Google Scholar 

  26. Peti W, Griesinger C, Bermel W. Adiabatic TOCSY for C,C and H,H J-transfer. J Biomol NMR. 2000;18:199–205.

    Article  CAS  Google Scholar 

  27. Woods GC, Simpson MJ, Koerner PJ, Napoli A, Simpson AJ. HILIC-NMR: toward the identification of individual molecular components in dissolved organic matter. Environ Sci Technol. 2011;45:3880–6.

    Article  CAS  Google Scholar 

  28. Lam L, Soong R, Sutrisno A, de Visser R, Simpson MJ, Wheeler HL, et al. Comprehensive multiphase NMR spectroscopy of intact 13C-labeled seeds. J Agric Food Chem. 2014;62:107–15.

    Article  CAS  Google Scholar 

  29. Farooq H, Courtier-Murias D, Soong R, Bermel W, Kingery WM, Simpson AJ. HR-MAS NMR spectroscopy: a practical guide for natural samples. Curr Org Chem. 2013;17:3013–31.

    Article  CAS  Google Scholar 

  30. Simpson AJ, McNally DJ, Simpson MJ. NMR spectroscopy in environmental research: from molecular interactions to global processes. Prog Nucl Magn Reson Spectrosc. 2011;58:97–175.

    Article  CAS  Google Scholar 

  31. Giraudeau P. Quantitative 2D liquid-state NMR. Magn Reson Chem. 2014;52:259–72.

    Article  CAS  Google Scholar 

  32. Liu X, Sheng J, Curtiss R. Fatty acid production in genetically modified cyanobacteria. Proc Natl Acad Sci. 2011;108:6899–904.

    Article  CAS  Google Scholar 

  33. Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, et al. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J. 2008;54:621–39.

    Article  CAS  Google Scholar 

  34. Stephenson AL, Dennis JS, Howe CJ, Scott SA, Smith AG. Influence of nitrogen-limitation regime on the production by Chlorella vulgaris of lipids for biodiesel feedstocks. Biofuels. 2010;1:47–58.

    Article  CAS  Google Scholar 

  35. Cai T, Ge X, Park SY, Li Y. Comparison of Synechocystis sp. PCC6803 and Nannochloropsis salina for lipid production using artificial seawater and nutrients from anaerobic digestion effluent. Bioresour Technol. 2013;144:255–60.

    Article  CAS  Google Scholar 

  36. DeMott WR, Zhang Q-X, Carmichael WW. Effects of toxic cyanobacteria and purified toxins on the survival and feeding of a copepod and three species of Daphnia. Limnol Oceanogr. 1991;36:1346–57.

    Article  CAS  Google Scholar 

  37. Wacker A, Martin-Creuzburg D. Allocation of essential lipids in Daphnia magna during exposure to poor food quality. Funct Ecol. 2007;21:738–47.

    Article  Google Scholar 

  38. Domaizon I, Desvilettes C, Debroas D, Bourdier G. Influence of zooplankton and phytoplankton on the fatty acid composition of digesta and tissue lipids of silver carp: mesocosm experiment. J Fish Biol. 2000;57:417–32.

    Article  CAS  Google Scholar 

  39. Woods GC, Simpson MJ, Simpson AJ. Oxidized sterols as a significant component of dissolved organic matter: evidence from 2D HPLC in combination with 2D and 3D NMR spectroscopy. Water Res. 2012;46:3398–408.

    Article  CAS  Google Scholar 

  40. Savage PE, Levine R, Pinnarat T. Method of producing biodiesel from a wet biomass. US Patent. 2014;8673028:B2.

    Google Scholar 

  41. Barry BA, Babcock GT. Tyrosine radicals are involved in the photosynthetic oxygen-evolving system. Proc Natl Acad Sci. 1987;84:7099–103.

    Article  CAS  Google Scholar 

  42. Bartel B. Auxin biosynthesis. Annu Rev Plant Physiol Plant Mol Biol. 1997;48:51–66.

    Article  CAS  Google Scholar 

  43. Delwiche CF, Graham LE, Thomson N. Lignin-like compounds and Sporopollenin coleochaete, an algal model for land plant ancestry. Science. 1989;245:399–401.

    Article  CAS  Google Scholar 

  44. Ritter H, Schulz GE. Structural basis for the entrance into the phenylpropanoid metabolism catalyzed by phenylalanine ammonia-lyase. Plant Cell Online. 2004;16:3426–36.

    Article  CAS  Google Scholar 

  45. Siripornadulsil S, Traina S, Verma DPS, Sayre RT. Molecular mechanisms of proline-mediated tolerance to toxic heavy metals in transgenic microalgae. Plant Cell Online. 2002;14:2837–47.

    Article  CAS  Google Scholar 

  46. Wu J, Chang S, Chou T. Intracellular proline accumulation in some algae exposed to copper and cadmium. Bot Bull Acad Sin. 1995;36:89–93.

    CAS  Google Scholar 

  47. Stasolla C, Katahira R, Thorpe TA, Ashihara H. Purine and pyrimidine nucleotide metabolism in higher plants. J Plant Physiol. 2003;160:1271–95.

    Article  CAS  Google Scholar 

  48. Tang H, Wang Y, Nicholson JK, Lindon JC. Use of relaxation-edited one-dimensional and two dimensional nuclear magnetic resonance spectroscopy to improve detection of small metabolites in blood plasma. Anal Biochem. 2004;325:260–72.

    Article  CAS  Google Scholar 

  49. Wang Y, Bollard ME, Keun H, Antti H, Beckonert O, Ebbels TM, et al. Spectral editing and pattern recognition methods applied to high-resolution magic-angle spinning 1H nuclear magnetic resonance spectroscopy of liver tissues. Anal Biochem. 2003;323:26–32.

    Article  CAS  Google Scholar 

  50. Beckonert O, Keun HC, Ebbels TMD, Bundy J, Holmes E, Lindon JC, et al. Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat Protoc. 2007;2:2692–703.

    Article  CAS  Google Scholar 

  51. Smith LM, Maher AD, Cloarec O, Rantalainen M, Tang H, Elliott P, et al. Statistical correlation and projection methods for improved information recovery from diffusion-edited NMR spectra of biological samples. Anal Chem. 2007;79:5682–9.

    Article  CAS  Google Scholar 

  52. Liu M, Nicholson JK, Lindon JC. High-resolution diffusion and relaxation edited one- and two-dimensional 1 H NMR spectroscopy of biological fluids. Anal Chem. 1996;68:3370–6.

    Article  CAS  Google Scholar 

  53. Krüger M, Heumann H. Isotopic labeling of higher organisms. US Patent. 2014;20140328760:A1.

    Google Scholar 

  54. Michel N, Akoka S. The application of the ERETIC method to 2D-NMR. J Magn Reson. 2004;168:118–23.

    Article  CAS  Google Scholar 

  55. Goldberg SJ, Ball GI, Allen BC, Schladow SG, Simpson AJ, Masoom H, et al. Refractory dissolved organic nitrogen accumulation in high-elevation lakes. Nat Commun. 2015;6:6347.

    Article  CAS  Google Scholar 

  56. Simpson AJ, Kingery WL, Hatcher PG. The identification of plant derived structures in humic materials using three-dimensional NMR spectroscopy. Environ Sci Technol. 2003;37:337–42.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

A. J. S. would like to thank Mark Krembil and the Krembil Foundation for both inspiring and funding this research. A. J. S. would like to thank the Natural Sciences and Engineering Research Council of Canada (NSERC) for financially supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André J. Simpson.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 4523 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhter, M., Dutta Majumdar, R., Fortier-McGill, B. et al. Identification of aquatically available carbon from algae through solution-state NMR of whole 13C-labelled cells. Anal Bioanal Chem 408, 4357–4370 (2016). https://doi.org/10.1007/s00216-016-9534-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9534-8

Keywords

Navigation