Skip to main content
Log in

Glycine functionalized multiwall carbon nanotubes as a novel hollow fiber solid-phase microextraction sorbent for pre-concentration of venlafaxine and o-desmethylvenlafaxine in biological and water samples prior to determination by high-performance liquid chromatography

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A hollow fiber solid-phase microextraction method for pre-concentration of venlafaxine and o-desmethylvenlafaxine in biological matrices is described for the first time. The functionalized MWCNTs with an amino acid, glycine, were synthesized and held in the pore of a hollow fiber by sol–gel technique. In order to extract venlafaxine and o-desmethylvenlafaxine from real samples, the hollow fiber was immersed into the sample solution under a magnetic stirring for 20 min. The extracted venlafaxine and o-desmethylvenlafaxine from the fibers were then desorbed with methanol by sonication and analyzed using high-performance liquid chromatography. Important microextraction parameters including pH of donor phase, donor phase volume, stirring rate, extraction time, and desorption conditions such as the type and volume of solvents and desorption time were thoroughly investigated and optimized. The optimized technique provides good repeatability (RSD of the intraday precision 3.7 and 3.4, interday precision of 5.8 and 5.4 %), linearity of (0.1–300 and 0.2–360 ng mL−1), low LODs of (0.03 and 0.07 ng mL−1), and high enrichment factor of (164 and 176) for venlafaxine and o-desmethylvenlafaxine, respectively. The analytical performance of Gly-MWCNTs as a new SPME sorbent was compared with MWCNTs and carboxylic MWCNTs. The results indicate that Gly-MWCNTs are quite effective for extraction of venlafaxine and o-desmethylvenlafaxine. Feasibility of the method was evaluated by analyzing human urine and real water samples. The results obtained in this work show a promising, simple, selective, and sensitive sample preparation and determination method for biological and water samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zou Y, Li Y, Jin H, Tang H, Zou D, Liu M, et al. Determination of estrogens in human urine by high-performance liquid chromatography/diode array detection with ultrasound-assisted cloud-point extraction. Anal Biochem. 2012;421(2):378–84. doi:10.1016/j.ab.2011.10.007.

    Article  CAS  Google Scholar 

  2. Gupta VK, Singh AK, Kumawat LK. Thiazole Schiff base turn-on fluorescent chemosensor for Al3+ ion. Sensors Actuators B. 2014;195:98–108. doi:10.1016/j.snb.2013.12.092.

    Article  CAS  Google Scholar 

  3. Pesarico AP, Sampaio TB, Stangherlin EC, Mantovani AC, Zeni G, Nogueira CW. The antidepressant-like effect of 7-fluoro-1,3-diphenylisoquinoline-1-amine in the mouse forced swimming test is mediated by serotonergic and dopaminergic systems. Prog Neuro-Psychopharmacol Biol Psychiatry. 2014;54:179–86. doi:10.1016/j.pnpbp.2014.06.001.

    Article  CAS  Google Scholar 

  4. Devkar TB, Tekade AR, Khandelwal KR. Surface engineered nanostructured lipid carriers for efficient nose to brain delivery of ondansetron HCl using Delonix regia gum as a natural mucoadhesive polymer. Colloids Surf B: Biointerfaces. 2014;122:143–50. doi:10.1016/j.colsurfb.2014.06.037.

    Article  CAS  Google Scholar 

  5. Qin XY, Meng J, Li XY, Zhou J, Sun XL, Wen AD. Determination of venlafaxine in human plasma by high-performance liquid chromatography using cloud-point extraction and spectrofluorimetric detection. J Chromatogr B. 2008;872(1–2):38–42. doi:10.1016/j.jchromb.2008.06.052.

    Article  CAS  Google Scholar 

  6. Mandrioli R, Mercolini L, Cesta R, Fanali S, Amore M, Raggi MA. Analysis of the second generation antidepressant venlafaxine and its main active metabolite O-desmethylvenlafaxine in human plasma by HPLC with spectrofluorimetric detection. J Chromatogr B. 2007;856(1–2):88–94. doi:10.1016/j.jchromb.2007.05.046.

    Article  CAS  Google Scholar 

  7. Unceta N, Ugarte A, Sánchez A, Gómez-Caballero A, Goicolea MA, Barrio RJ. Development of a stir bar sorptive extraction based HPLC-FLD method for the quantification of serotonin reuptake inhibitors in plasma, urine and brain tissue samples. J Pharm Biomed Anal. 2010;51(1):178–85. doi:10.1016/j.jpba.2009.07.015.

    Article  CAS  Google Scholar 

  8. Liu W, H-l C, H-d L. High performance liquid chromatography-electrospray ionization mass spectrometry (HPLC-MS/ESI) method for simultaneous determination of venlafaxine and its three metabolites in human plasma. J Chromatogr B. 2007;850(1–2):405–11. doi:10.1016/j.jchromb.2006.12.019.

    Article  CAS  Google Scholar 

  9. Matoga M, Pehourcq F, Titier K, Dumora F, Jarry C. Rapid high-performance liquid chromatographic measurement of venlafaxine and O-desmethylvenlafaxine in human plasma: application to management of acute intoxications. J Chromatogr B. 2001;760(2):213–8. doi:10.1016/S0378-4347(01)00270-5.

    Article  CAS  Google Scholar 

  10. Dziurkowska E, Wesolowski M. Simultaneous quantitation of venlafaxine and its main metabolite, O-desmethylvenlafaxine, in human saliva by HPLC. J Sep Sci. 2013;36(11):1726–33.

    Article  CAS  Google Scholar 

  11. Magalhães P, Alves G, Rodrigues M, LLerena A, Falcão A. First MEPS/HPLC assay for the simultaneous determination of venlafaxine and O-desmethylvenlafaxine in human plasma. Bioanalysis. 2014;6(22):3025–38.

    Article  Google Scholar 

  12. Ebrahimzadeh H, Saharkhiz Z, Tavassoli M, Kamarei F, Asgharinezhad AA. Ultrasound-assisted emulsification microextraction based on solidification of floating organic droplet combined with HPLC-UV for the analysis of antidepressant drugs in biological samples. J Sep Sci. 2011;34(11):1275–82.

    Article  CAS  Google Scholar 

  13. Kobus Z. Studies upon the ultrasonic extraction process on an example of dry matter extraction from dried carrots. Teka Komisji Motoryzacji i Energetyki Rolnictwa. 2006;6.

  14. Enggaard TP, Mikkelsen SS, Zwisler ST, Klitgaard NA, Sindrup SH. The effects of gabapentin in human experimental pain models. Scand J Pain. 2010;1(3):143–8. doi:10.1016/j.sjpain.2010.04.001.

    Article  Google Scholar 

  15. Deng H, Teo AKL, Gao Z. An interference-free glucose biosensor based on a novel low potential redox polymer mediator. Sensors Actuators B. 2014;191:522–8. doi:10.1016/j.snb.2013.10.059.

    Article  CAS  Google Scholar 

  16. Allafchian AR, Majidian Z, Ielbeigi V, Tabrizchi M. A novel method for the determination of three volatile organic compounds in exhaled breath by solid-phase microextraction–ion mobility spectrometry. Anal Bioanal Chem. 2016;408(3):839–47.

    Article  CAS  Google Scholar 

  17. Saraji M, Jafari MT, Sherafatmand H. Sol–gel/nanoclay composite as a solid-phase microextraction fiber coating for the determination of organophosphorus pesticides in water samples. Anal Bioanal Chem. 2015;407(4):1241–52.

    Article  CAS  Google Scholar 

  18. Feng J, Sun M, Bu Y, Luo C. Development of a functionalized polymeric ionic liquid monolith for solid-phase microextraction of polar endocrine disrupting chemicals in aqueous samples coupled to high-performance liquid chromatography. Anal Bioanal Chem. 2015;407(23):7025–35.

    Article  CAS  Google Scholar 

  19. Bagheri H, Piri-Moghadam H, Naderi M. Towards greater mechanical, thermal and chemical stability in solid-phase microextraction. TrAC Trends Anal Chem. 2012;34:126–39. doi:10.1016/j.trac.2011.11.004.

    Article  CAS  Google Scholar 

  20. Sarafraz-Yazdi A, Amiri A. Liquid-phase microextraction. TrAC Trends Anal Chem. 2010;29(1):1–14. doi:10.1016/j.trac.2009.10.003.

    Article  CAS  Google Scholar 

  21. Es’haghi Z, Rezaeifar Z, Rounaghi G-H, Nezhadi ZA, Golsefidi MA. Synthesis and application of a novel solid-phase microextraction adsorbent: hollow fiber supported carbon nanotube reinforced sol–gel for determination of phenobarbital. Anal Chim Acta. 2011;689(1):122–8. doi:10.1016/j.aca.2011.01.019.

    Article  Google Scholar 

  22. Souza Silva EA, Risticevic S, Pawliszyn J. Recent trends in SPME concerning sorbent materials, configurations and <i> in vivo </i> applications. TrAC Trends Anal Chem. 2013;43:24–36.

    Article  CAS  Google Scholar 

  23. Chong SL, Wang D, Hayes JD, Wilhite BW, Malik A. Sol–gel coating technology for the preparation of solid-phase microextraction fibers of enhanced thermal stability. Anal Chem. 1997;69(19):3889–98.

    Article  CAS  Google Scholar 

  24. Kumar A, Malik AK, Tewary DK, Singh B. A review on development of solid phase microextraction fibers by sol–gel methods and their applications. Anal Chim Acta. 2008;610(1):1–14.

    Article  CAS  Google Scholar 

  25. Li H, Helm PA, Paterson G, Metcalfe CD. The effects of dissolved organic matter and pH on sampling rates for polar organic chemical integrative samplers (POCIS). Chemosphere. 2011;83(3):271–80. doi:10.1016/j.chemosphere.2010.12.071.

    Article  CAS  Google Scholar 

  26. Ren X, Chen C, Nagatsu M, Wang X. Carbon nanotubes as adsorbents in environmental pollution management: a review. Chem Eng J. 2011;170(2–3):395–410. doi:10.1016/j.cej.2010.08.045.

    Article  CAS  Google Scholar 

  27. Vega-Rivera NM, Fernández-Guasti A, Ramírez-Rodríguez G, Estrada-Camarena E. Forced swim and chronic variable stress reduced hippocampal cell survival in OVX female rats. Behav Brain Res. 2014;270:248–55. doi:10.1016/j.bbr.2014.05.033.

    Article  Google Scholar 

  28. Xu J, Zheng J, Tian J, Zhu F, Zeng F, Su C, et al. New materials in solid-phase microextraction. TrAC Trends Anal Chem. 2013;47:68–83.

    Article  CAS  Google Scholar 

  29. Ramanathan T, Fisher F, Ruoff R, Brinson L. Amino-functionalized carbon nanotubes for binding to polymers and biological systems. Chem Mater. 2005;17(6):1290–5.

    Article  CAS  Google Scholar 

  30. Piao L, Liu Q, Li Y. Interaction of amino acids and single-wall carbon nanotubes. J Phys Chem C. 2012;116(2):1724–31.

    Article  CAS  Google Scholar 

  31. Deborah M, Jawahar A, Mathavan T, Kumara Dhas M, Benial AMF Spectroscopic studies on covalent functionalization of single-walled carbon nanotubes with glycine. Spectrochim Acta, Part A, In Press. doi:10.1016/j.saa.2014.09.065

  32. Saracino MA, Mercolini L, Carbini G, Volterra V, Quarta AL, Amore M, et al. Multi-matrix assay of the first melatonergic antidepressant agomelatine by combined liquid chromatography-fluorimetric detection and microextraction by packed sorbent. J Pharm Biomed Anal. 2014;95:61–7. doi:10.1016/j.jpba.2014.02.005.

    Article  CAS  Google Scholar 

  33. Lengyel K, Pieschl R, Strong T, Molski T, Mattson G, Lodge NJ, et al. Ex vivo assessment of binding site occupancy of monoamine reuptake inhibitors: methodology and biological significance. Neuropharmacology. 2008;55(1):63–70. doi:10.1016/j.neuropharm.2008.04.014.

    Article  CAS  Google Scholar 

  34. Beaudoin-Gobert M, Sgambato-Faure V. Serotonergic pharmacology in animal models: from behavioral disorders to dyskinesia. Neuropharmacology. 2014;81:15–30. doi:10.1016/j.neuropharm.2014.01.031.

    Article  CAS  Google Scholar 

  35. Zhou Y, Ren Y, Ma Z, Jia G, Gao X, Zhang L, et al. Identification and quantification of the major volatile constituents in antidepressant active fraction of xiaoyaosan by gas chromatography–mass spectrometry. J Ethnopharmacol. 2012;141(1):187–92. doi:10.1016/j.jep.2012.02.018.

    Article  CAS  Google Scholar 

  36. Kudlejova L, Risticevic S, Vuckovic D. Solid-phase microextraction method development. Handbook of solid phase microextration. Waltham: Elsevier; 2012.

    Google Scholar 

  37. Manier DH, Shelton RC, Sulser F. Cross-talk between PKA and PKC in human fibroblasts: what are the pharmacotherapeutic implications? J Affect Disord. 2001;65(3):275–9. doi:10.1016/S0165-0327(00)00278-0.

    Article  CAS  Google Scholar 

  38. Gutte KB, Sahoo AK, Ranveer RC. Effect of ultrasonic treatment on extraction and fatty acid profile of flaxseed oil. OCL. 2015;22(6):D606.

    Article  Google Scholar 

  39. Mandrioli R, Mercolini L, Cesta R, Fanali S, Amore M, Raggi MA. Analysis of the second generation antidepressant venlafaxine and its main active metabolite O-desmethylvenlafaxine in human plasma by HPLC with spectrofluorimetric detection. J Chromatogr B. 2007;856(1):88–94.

    Article  CAS  Google Scholar 

  40. Qin F, Li N, Qin T, Zhang Y, Li F. Simultaneous quantification of venlafaxine and O-desmethylvenlafaxine in human plasma by ultra performance liquid chromatography–tandem mass spectrometry and its application in a pharmacokinetic study. J Chromatogr B. 2010;878(7):689–94.

    Article  CAS  Google Scholar 

  41. Magalhães P, Alves G, Rodrigues M, LLerena A, Falcão A. First MEPS/HPLC assay for the simultaneous determination of venlafaxine and O-desmethylvenlafaxine in human plasma. Bioanalysis. 2014;22(6):3025–38.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of this research by the Ferdowsi University of Mashhad, Mashhad, Iran (No. 3/32789 dated 12/21/2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Chamsaz.

Ethics declarations

This article does not contain any studies with human or animal subjects.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 777 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghorbani, M., Chamsaz, M. & Rounaghi, G.H. Glycine functionalized multiwall carbon nanotubes as a novel hollow fiber solid-phase microextraction sorbent for pre-concentration of venlafaxine and o-desmethylvenlafaxine in biological and water samples prior to determination by high-performance liquid chromatography. Anal Bioanal Chem 408, 4247–4256 (2016). https://doi.org/10.1007/s00216-016-9518-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9518-8

Keywords

Navigation