Skip to main content
Log in

Label-free C-reactive protein electronic detection with an electrolyte-gated organic field-effect transistor-based immunosensor

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this contribution, we propose a label-free immunosensor, based on a novel type of electrolyte-gated field-effect transistor (EGOFET), for ultrasensitive detection of the C-reactive protein (CRP). The recognition layer of the biosensor is fabricated by physical adsorption of the anti-CRP monoclonal antibody onto a poly-3-hexyl thiophene (P3HT) organic semiconductor surface. A supplementary nonionic hydrophilic polymer is used as a blocking agent preventing nonspecific interactions and allowing a better orientation of the antibodies immobilized onto the P3HT surface. The whole biomolecule immobilization procedure does not require any pretreatment of the organic semiconductor surface, and the whole functionalization process is completed in less than 30 min. Surface plasmon resonance (SPR) measurements were performed to assess the amount of biomolecules physisorbed onto the P3HT and to evaluate the CRP binding proprieties of the deposited anti-CRP layer. A partial surface coverage of about 23 % of adsorbed antibody molecules was found to most efficiently sense the CRP. The electrical performance of the EGOFET immunosensor was comparable to that of a bare P3HT EGOFET device, and the obtained CRP calibration curve was linear over six orders of magnitude (from 4 pM to 2 μM). The relative standard deviation of the individual calibration points, measured on immunosensors fabricated on different chips, ranged between 1 and 14 %, and a detection limit of 2 pM (220 ng/L) was established. The novel electronic immunosensor is compatible with low-cost fabrication procedures and was successfully employed for the detection of the CRP biomarker in the clinically relevant matrix serum.

Schematic of the EGOFET immunosensor for CRP detection. The anti-CRP monoclonal antibody layer is physisorbed on the P3HT organic semiconductor and the CRP is directly measured by a label-free electronic EGOFET transducer

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cramer T, Campana A, Leonardi F, Casalini S, Kyndiah A, Murgia M, et al. Water-gated organic field effect transistors—opportunities for biochemical sensing and extracellular signal transduction. J Mater Chem B. 2013;1(31):3728–41.

    Article  CAS  Google Scholar 

  2. Kergoat L, Herlogsson L, Braga D, Piro B, Pham M-C, Crispin X, et al. A water-gate organic field-effect transistor. Adv Mater. 2010;22(23):2565–9.

    Article  CAS  Google Scholar 

  3. Palazzo G, De Tullio D, Magliulo M, Mallardi A, Intranuovo F, Mulla MY, et al. Detection beyond Debye’s length with an electrolyte-gated organic field-effect transistor. Adv Mater. 2015;27:911–6.

    Article  CAS  Google Scholar 

  4. Magliulo M, Mallardi A, Mulla MY, Cotrone S, Pistillo BR, Favia P, et al. Electrolyte-gated organic field-effect transistor sensors based on supported biotinylated phospholipid bilayer. Adv Mater. 2013;25(14):2090–4.

    Article  CAS  Google Scholar 

  5. Magliulo M, Mallardi A, Gristina R, Ridi F, Sabbatini L, Cioffi N, et al. Part per trillion label-free electronic bioanalytical detection. Anal Chem. 2013;85(8):3849–57.

    Article  CAS  Google Scholar 

  6. Kim SH, Hong K, Xie W, Lee KH, Zhang S, Lodge TP, et al. Electrolyte-gated transistors for organic and printed electronics. Adv Mater. 2013;25(13):1822–46.

    Article  CAS  Google Scholar 

  7. Manoli K, Magliulo M, Mulla MY, Sing M, Sabbatini L, Palazzo G, et al. Printable bioelectronics to investigate functional biological interfaces. Angew Chem Int Ed. 2015;54:12562.

    Article  CAS  Google Scholar 

  8. Mulla MY, Tuccori E, Magliulo M, Lattanzi G, Palazzo G, Persaud K, et al. Capacitance-modulated transistor detects odorant binding protein chiral interactions. Nat Commun. 2015;6:6010.

    Article  CAS  Google Scholar 

  9. Casalini S, Leonardi F, Cramer T, Biscarini F. Organic field-effect transistor for label-free dopamine sensing. Org Electron. 2013;14(1):156–63.

    Article  CAS  Google Scholar 

  10. Suspène C, Piro B, Reisberg S, Pham M-C, Toss H, Berggren M, et al. Copolythiophene-based water-gated organic field-effect transistors for biosensing. J Mater Chem B. 2013;1(15):2090.

    Article  Google Scholar 

  11. Awsiuk K, Budkowski A, Marzec MM, Petrou P, Rysz J, Bernasik A. Effects of polythiophene surface structure on adsorption and conformation of bovine serum albumin: a multivariate and multitechnique study. Langmuir. 2014;30(46):13925–33.

    Article  CAS  Google Scholar 

  12. Albers WM, Pelto JM, Suspène C, Määttä JA, Yassar A, Hytönen VP, et al. Structural and functional characteristics of chimeric avidins physically adsorbed onto functionalized polythiophene thin films. ACS Appl Mater Interfaces. 2012;4(8):4067–77.

    Article  CAS  Google Scholar 

  13. Vikholm-Lundin I, Albers WM. Site-directed immobilisation of antibody fragments for detection of C-reactive protein. Biosens Bioelectron. 2006;21(7):1141–8.

    Article  CAS  Google Scholar 

  14. Quershi A, Gurbuz Y, Kang WP, Davidson JL. A novel interdigitated capacitor based biosensor for detection of cardiovascular risk marker. Biosens Bioelectron. 2009;25(4):877–82.

    Article  CAS  Google Scholar 

  15. Justino CIL, Freitas AC, Amaral JP, Rocha-Santos TAP, Cardoso S, Duarte AC. Disposable immunosensors for C-reactive protein based on carbon nanotubes field effect transistors. Talanta. 2013;108:165–70.

    Article  CAS  Google Scholar 

  16. Gupta RK, Periyakaruppan A, Meyyappan M, Koehne JE. Label-free detection of C-reactive protein using a carbon nanofiber based biosensor. Biosens Bioelectron. 2014;59:112–9.

    Article  CAS  Google Scholar 

  17. Qureshi A, Niazi JH, Kallempudi S, Gurbuz Y. Label-free capacitive biosensor for sensitive detection of multiple biomarkers using gold interdigitated capacitor arrays. Biosens Bioelectron. 2010;25(10):2318–23.

    Article  CAS  Google Scholar 

  18. Kwon SM, Kang GB, Kim YT, Kim YH, Ju BK. In-situ detection of C-reactive protein using silicon nanowire field effect transistor. J Nanosci Nanotechnol. 2011;11(2):1511–4.

    Article  CAS  Google Scholar 

  19. Urien M, Wantz G, Cloutet E, Hirsch L, Tardy P, Vignau L, et al. Field-effect transistors based on poly(3-hexylthiophene): effect of impurities. Org Electron. 2007;8(6):727–34.

    Article  CAS  Google Scholar 

  20. Albers WM, Munter T, Laaksonen P, Vikholm-Lundin I. Improved functionality of antibody-colloidal gold conjugates with the aid of lipoamide-grafted N-[tris(hydroxymethyl)methyl]acrylamide polymers. J Colloid Interface Sci. 2010;348:1–8.

    Article  CAS  Google Scholar 

  21. Dinelli F, Moulin JF, Loi MA, Da Como E, Massi M, Murgia M, et al. Effects of surface chemical composition on the early growth stages of alpha-sexithienyl films on silicon oxide substrates. J Phys Chem B. 2006;110(1):258–63.

    Article  CAS  Google Scholar 

  22. Biacore 3000 instrument manual. Biacore AB, Uppsala, Sweden, 1999.

  23. Braga D, Horowitz G. High-performance organic field-effect transistors. Adv Mater. 2009;21(14):1473–86.

    Article  CAS  Google Scholar 

  24. Ishikawa FN, Curreli M, Chang H-K, Chen P-C, Zhang R, Cote RJ, et al. A calibration method for nanowire biosensors to suppress device-to-device variation. ACS Nano. 2009;3(12):3969–76.

    Article  CAS  Google Scholar 

  25. Torsi L, Magliulo M, Manoli K, Palazzo G. Organic field-effect transistor sensors: a tutorial review. Chem Soc Rev. 2013;42:8612.

    Article  CAS  Google Scholar 

  26. Cho S, Lee K, Yuen J, Wang G, Moses D, Heeger AJ, et al. Thermal annealing-induced enhancement of the field-effect mobility of regioregular poly(3-hexylthiophene) films. J Appl Phys. 2006;100(11):114503.

    Article  Google Scholar 

  27. Casalini S, Dumitru AC, Leonardi F, Bortolotti CA, Herruzo ET, Campana A, et al. Multiscale sensing of antibody-antigen interactions by organic transistors and single-molecule force spectroscopy. ACS Nano. 2015;9(5):5051–62.

    Article  CAS  Google Scholar 

  28. Mulla MY, Seshadri P, Torsi L, Manoli K, Mallardi A, Ditaranto N, et al. UV crosslinked poly(acrylic acid): a simple method to bio-functionalize electrolyte-gated OFET biosensors. J Mater Chem B. 2015;3:5049–57.

    Article  CAS  Google Scholar 

  29. Harris LJ, Larson SB, Hasel KW, McPherson A. Refined structure of an intact IgG2a monoclonal antibody. Biochemistry. 1997;36:1581–97.

    Article  CAS  Google Scholar 

  30. Algarra M, Gomes D, Esteves da Silva JCG. Current analytical strategies for C-reactive protein quantification in blood. Clin Chim Acta. 2013;415:1–9.

    Article  CAS  Google Scholar 

  31. Lee WS, Sunkara V, Han JR, Park YS, Cho YK. Electrospun TiO2 nanofiber integrated lab-on-a-disc for ultrasensitive protein detection from whole blood. Lab Chip. 2015;15(2):478–85.

    Article  CAS  Google Scholar 

  32. Aleeva Y, Pignataro B. Recent advances in upscalable wet methods and ink formulations for printed electronics. J Mater Chem C. 2014;2(32):6436.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The “Electrolyte-Gated Organic Field-Effect Biosensors—BioEGOFET” project FP7/2007-2013 under Grant agreement no. 248728, the “OFET biosensors for point-of-care applications–sense-of-care” project, FP7-People-ITN-EID-2012 under Grant Agreement 316845 and the PON project “Laboratorio per lo Sviluppo Integrato delle Scienze e delle Tecnologie dei Materiali Avanzati e per dispositivi innovativi-LABORATORIO SISTEMA,” and the PRIN 2010–2011 project no. 2010BJ23MN “Nanostructured Soft Matter” by the Italian MIUR (Ministry of Education, Universities and Research) are acknowledged for partial financial support of this work. Professor Gaetano Scamarcio is acknowledged for useful discussions. Dr. Cinzia Di Franco is acknowledged for her support in the realization of photo-lithographically patterned substrates.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Magliulo.

Ethics declarations

The study has been approved by the ethics committee of the University of Bari “Aldo Moro” and has been performed in accordance with the ethical standards.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Published in the topical collection featuring Young Investigators in Analytical and Bioanalytical Science with guest editors S. Daunert, A. Baeumner, S. Deo, J. Ruiz Encinar, and L. Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 51 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magliulo, M., De Tullio, D., Vikholm-Lundin, I. et al. Label-free C-reactive protein electronic detection with an electrolyte-gated organic field-effect transistor-based immunosensor. Anal Bioanal Chem 408, 3943–3952 (2016). https://doi.org/10.1007/s00216-016-9502-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9502-3

Keywords

Navigation