Skip to main content
Log in

Determination of thiophenols with a novel fluorescence labelling reagent: analysis of industrial wastewater samples with SPE extraction coupled with HPLC

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A simple, sensitive, and selective high-performance liquid chromatography (HPLC) method using 9-(2-iodoethyl)acridone (IEA) as a novel fluorescence derivatizing agent for the simultaneous determination of six thiophenols has been developed. An efficient Pb2+-modified OASIS-MCX cartridge was used and could get good recoveries. IEA was successfully used to label thiophenols with high sensitivity and excellent selectivity. The effects of different solvents, pH, and surfactants on fluorescence properties of derivatives were investigated. To obtain the best labeling efficiency, derivatizing parameters including pH value, temperature, and concentration of IEA, as well as types of catalysts were also evaluated in detail. Under the optimal conditions, the separation could be achieved within 12 min with limits of detection (LODs) in the range of 0.6–5.8 μg L−1 and relative standard deviations (RSDs) < 3.9 %. This is the first time that IEA was applied to the analysis of thiophenols, and the established method has been successfully applied to the trace level detection of thiophenols in industrial wastewater samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev. 2005;105(4):1103–70.

    Article  CAS  Google Scholar 

  2. Eychmüller A, Rogach AL. Chemistry and photophysics of thiol-stabilized II-VI semiconductor nanocrystals. Pure Appl Chem. 2000;72(1–2):179–88.

    Google Scholar 

  3. Hell TP, Lindsay RC. Toxicological properties of thio‐and alkylphenols causing flavor tainting in fish from the upper Wisconsin River. J Environ Sci Health B. 1989;24(4):349–60.

    Article  Google Scholar 

  4. Amrolia P, Sullivan SG, Stern A, Munday R. Toxicity of aromatic thiols in the human red blood cell. J Appl Toxicol. 1989;9(2):113–8.

    Article  CAS  Google Scholar 

  5. Santangelo F, Witko-Sarsat V, Drüeke T, Descamps-Latscha B. Restoring glutathione as a therapeutic strategy in chronic kidney disease. Nephrol Dial Transplant. 2004;19(8):1951–5.

    Article  CAS  Google Scholar 

  6. Kand D, Mishra PK, Saha T, Lahiri M, Talukdar P. BODIPY based colorimetric fluorescent probe for selective thiophenol detection: theoretical and experimental studies. Analyst. 2012;137(17):3921–4.

    Article  CAS  Google Scholar 

  7. Jung HS, Chen X, Kim JS, Yoon J. Recent progress in luminescent and colorimetric chemosensors for detection of thiols. Chem Soc Rev. 2013;42(14):6019–31.

    Article  CAS  Google Scholar 

  8. Sun W, Li W, Li J, Zhang J, Du L, Li M. Naphthalimide-based fluorescent off/on probes for the detection of thiols. Tetrahedron. 2012;68(27):5363–7.

    Article  CAS  Google Scholar 

  9. Yao Z, Bai H, Li C, Shi G. Colorimetric and fluorescent dual probe based on a polythiophene derivative for the detection of cysteine and homocysteine. Chem Commun. 2011;47(26):7431–3.

    Article  CAS  Google Scholar 

  10. Li J, Zhang C-F, Yang S-H, Yang W-C, Yang G-F. A coumarin-based fluorescent probe for selective and sensitive detection of thiophenols and its application. Anal Chem. 2014;86(6):3037–42.

    Article  CAS  Google Scholar 

  11. Ševčíková P, Glatz Z. Specific determination of cysteine in human urine by capillary micellar electrokinetic chromatography. J Sep Sci. 2003;26(8):734–8.

    Article  Google Scholar 

  12. Carlucci F, Tabucchi A. Capillary electrophoresis in the evaluation of aminothiols in body fluids. J Chromatogr B. 2009;877(28):3347–57.

    Article  CAS  Google Scholar 

  13. Mestres M, Busto O, Guasch J. Chromatographic analysis of volatile sulphur compounds in wines using the static headspace technique with flame photometric detection. J Chromatogr A. 1997;773(1):261–9.

    Article  CAS  Google Scholar 

  14. Valerio A, Baldo G, Tessari P. A rapid method to determine plasma homocysteine concentration and enrichment by gas chromatography/mass spectrometry. Rapid Commun Mass Spectrom. 2005;19(4):561–7.

    Article  CAS  Google Scholar 

  15. Amarnath K, Amarnath V, Amarnath K, Valentine HL, Valentine WM. A specific HPLC-UV method for the determination of cysteine and related aminothiols in biological samples. Talanta. 2003;60(6):1229–38.

    Article  CAS  Google Scholar 

  16. Kuśmierek K, Głowacki R, Bald E. Analysis of urine for cysteine, cysteinylglycine, and homocysteine by high-performance liquid chromatography. Anal Bioanal Chem. 2006;385(5):855–60.

    Article  Google Scholar 

  17. Ferin R, Pavão ML, Baptista J. Methodology for a rapid and simultaneous determination of total cysteine, homocysteine, cysteinylglycine and glutathione in plasma by isocratic RP-HPLC. J Chromatogr B. 2012;911:15–20.

    Article  CAS  Google Scholar 

  18. Janeš L, Lisjak K, Vanzo A. Determination of glutathione content in grape juice and wine by high-performance liquid chromatography with fluorescence detection. Anal Chim Acta. 2010;674(2):239–42.

    Article  Google Scholar 

  19. Yue Y, Guo Y, Xu J, Shao S. A Bodipy-based derivative for selective fluorescence sensing of homocysteine and cysteine. New J Chem. 2011;35(1):61–4.

    Article  CAS  Google Scholar 

  20. Ma J, Gu Y, Chen B, Yao S, Chen Z. High-performance liquid chromatography-electronspray ionization mass spectrometry for determination of tiopronin in human plasma. J Chromatogr A. 2006;1113(1):55–9.

    Article  CAS  Google Scholar 

  21. Seiwert B, Karst U. Simultaneous LC/MS/MS determination of thiols and disulfides in urine samples based on differential labeling with ferrocene-based maleimides. Anal Chem. 2007;79(18):7131–8.

    Article  CAS  Google Scholar 

  22. Guo X-F, Wang H, Guo Y-H, Zhang Z-X, Zhang H-S. Simultaneous analysis of plasma thiols by high-performance liquid chromatography with fluorescence detection using a new probe, 1, 3, 5, 7-tetramethyl-8-phenyl-(4-iodoacetamido) difluoroboradiaza-s-indacene. J Chromatogr A. 2009;1216(18):3874–80.

    Article  CAS  Google Scholar 

  23. Park SK, Boulton RB, Noble AC. Automated HPLC analysis of glutathione and thiol-containing compounds in grape juice and wine using pre-column derivatization with fluorescence detection. Food Chem. 2000;68(4):475–80.

    Article  CAS  Google Scholar 

  24. Wang H, Liang S-C, Zhang Z-M, Zhang H-S. 3-Iodoacetylaminobenzanthrone as a fluorescent derivatizing reagent for thiols in high-performance liquid chromatography. Anal Chim Acta. 2004;512(2):281–6.

    Article  CAS  Google Scholar 

  25. Liang S-C, Wang H, Zhang Z-M, Zhang H-S. Determination of thiol by high-performance liquid chromatography and fluorescence detection with 5-methyl-(2-(m-iodoacetylaminophenyl) benzoxazole. Anal Bioanal Chem. 2005;381(5):1095–100.

    Article  CAS  Google Scholar 

  26. Guo X-F, Zhao P-X, Wang H, Zhang H-S. Simple and rapid determination of thiol compounds by HPLC and fluorescence detection with 1, 3, 5, 7-tetramethyl-8-phenyl-(2-maleimide) difluoroboradiaza-s-indacene. J Chromatogr B. 2011;879(32):3932–6.

    Article  CAS  Google Scholar 

  27. Ivanov A, Nazimov I, Baratova L. Determination of biologically active low-molecular-mass thiols in human blood: I. Fast qualitative and quantitative, gradient and isocratic reversed-phase high-performance liquid chromatography with photometric and fluorescence detection. J Chromatogr A. 2000;895(1):157–66.

    Article  CAS  Google Scholar 

  28. Tcherkas Y, Denisenko A. Simultaneous determination of several amino acids, including homocysteine, cysteine and glutamic acid, in human plasma by isocratic reversed-phase high-performance liquid chromatography with fluorimetric detection. J Chromatogr A. 2001;913(1):309–13.

    Article  CAS  Google Scholar 

  29. Ling BL, Dewaele C, Baeyens W. Micro liquid chromatography with fluorescence detection of thiols and disulphides. J Chromatogr A. 1991;553:433–9.

    Article  CAS  Google Scholar 

  30. Higashi Y, Yamashiro M, Yamamoto R, Fujii Y. HPLC analysis of bucillamine by derivatization with N-(1-Pyrenyl) maleimide in human blood. J Liq Chromatogr Relat Technol. 2003;26(19):3265–75.

    Article  CAS  Google Scholar 

  31. Bald E, Chwatko G, Glowacki R, Kusmierek K. Analysis of plasma thiols by high-performance liquid chromatography with ultraviolet detection. J Chromatogr A. 2004;1032(1):109–15.

    Article  CAS  Google Scholar 

  32. Cocco L, Martelli AM, Billi AM, Matteucci A, Vitale M, Neri LM, et al. Changes in nucleosome structure and histone H3 accessibility: iodoacetamidofluorescein labelling after treatment with phosphatidylserine vesicles. Exp Cell Res. 1986;166(2):465–74.

    Article  CAS  Google Scholar 

  33. Imai K, Toyo’oka T, Watanabe Y. A novel fluorogenic reagent for thiols: ammonium 7-fluorobenzo-2-oxa-1, 3-diazole-4-sulfonate. Anal Biochem. 1983;128(2):471–3.

    Article  CAS  Google Scholar 

  34. Kang L, You J, Sun Z, Wang C, Ji Z, Gao Y, et al. LC Determination of trace biogenic amines in foods samples with fluorescence detection and MS identification. Chromatographia. 2011;73(1–2):43–50.

    Article  CAS  Google Scholar 

  35. You J, Zhang W, Zhang Q, Zhang L, Yan C, Zhang Y. Development of a precolumn derivatization method for the determination of free amines in wastewater by high-performance liquid chromatography via fluorescent detection with 9-(2-hydroxyethyl) acridone. Anal Chem. 2002;74(1):261–9.

    Article  CAS  Google Scholar 

  36. Xe Z, Wang H, Ding C, Suo Y, Sun J, Chen G, et al. Determination of free fatty acids from soil and bryophyte by HPLC with fluorescence detection and identification with mass spectrometry. Chin J Anal Chem. 2006;34(2):150–5.

    Article  Google Scholar 

  37. Beiner K, Popp P, Wennrich R. Selective enrichment of sulfides, thiols and methylthiophosphates from water samples on metal-loaded cation-exchange materials for gas chromatographic analysis. J Chromatogr A. 2002;968(1):171–6.

    Article  CAS  Google Scholar 

  38. You J, Lao W, You J, Wang G. Characterization and application of acridine-9-N-acetyl-N-hydroxysuccinimide as a pre-column derivatization agent for fluorimetric detection of amino acids in liquid chromatography. Analyst. 1999;124(12):1755–60.

    Article  CAS  Google Scholar 

  39. You J, You J, Lao W, Wang G, Jia X. Fluorescence properties of carbazole-9-ylpropionic acid and its application to the determination of amines via HPLC with fluorescence detection. Analyst. 1999;124(3):281–8.

    Article  CAS  Google Scholar 

  40. Fan X, You J, Kang J, Ou Q, Zhu Q. New reagents for determination of amino acids by liquid chromatography with pre-column fluorescence derivatization. Anal Chim Acta. 1998;367(1):81–91.

    Article  Google Scholar 

  41. Wang T, Chamberlain E, Shi H, Adams CD, Ma Y. Identification of hydrolytic metabolites of dyfonate in alkaline aqueous solutions by using high performance liquid chromatography–UV detection and gas chromatography–mass spectrometry. Int J Environ Anal Chem. 2010;90(12):948–61.

    Article  CAS  Google Scholar 

  42. Jiang W, Cao Y, Liu Y, Wang W. Rational design of a highly selective and sensitive fluorescent PET probe for discrimination of thiophenols and aliphatic thiols. Chem Commun. 2010;46(11):1944–6.

    Article  CAS  Google Scholar 

  43. Wang Z, Han D-M, Jia W-P, Zhou Q-Z, Deng W-P. Reaction-based fluorescent probe for selective discrimination of thiophenols over aliphaticthiols and its application in water samples. Anal Chem. 2012;84(11):4915–20.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research was supported by the National Natural Science Foundation of China (nos. 21475075 and 21275089).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanan Sun or Jinmao You.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 189 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Lv, Z., Sun, Z. et al. Determination of thiophenols with a novel fluorescence labelling reagent: analysis of industrial wastewater samples with SPE extraction coupled with HPLC. Anal Bioanal Chem 408, 3527–3536 (2016). https://doi.org/10.1007/s00216-016-9429-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9429-8

Keywords

Navigation