Skip to main content
Log in

Bioanalytical approaches for the detection of protein acetylation-related enzymes

  • Trends
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Reversible protein acetylation catalyzed by histone acetyltransferases (HATs) and histone deacetylases (HDACs) is an essential post-translational modification (PTM) mechanism which correlates largely with epigenetic gene regulation such as transcriptional activation, DNA replication, histone deposition, and DNA repair. Dysfunction of histone acetylation and the aberrant activity of HATs/HDACs is often associated with the pathogenesis of numerous diseases, especially cancer. Therefore, developing potent and specific analytical methods for HATs/HDACs is important for fundamental biochemical research, disease diagnosis and treatment, and drug development. This paper briefly summarizes the general design strategies used in HAT/HDAC sensors, gives a systematic overview of recent advances in the analytical methods for HAT/HDAC enzymatic analysis, classifies these methods by their biorecognition mechanisms and relative applications either in vitro or in living cells, then outlines challenges faced by these bioanalytical methods and offers perspectives on future developments.

Reversible acetylation modification process and the general sensing mechanisms of protein acetylation-related enzymes (PAREs) activity

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jenuwein T, Allis CD. Translating the histone code. Science. 2001;293(5532):1074–80.

    Article  CAS  Google Scholar 

  2. Zhao S, Xu W, Jiang W, Yu W, Lin Y, Zhang T, et al. Regulation of cellular metabolism by protein lysine acetylation. Science. 2010;327(5968):1000–4.

    Article  CAS  Google Scholar 

  3. Biel M, Wascholowski V, Giannis A. Epigenetics-an epicenter of gene regulation: histones and histone-modifying enzymes. Angew Chem Int Ed. 2005;44(21):3186–216.

    Article  CAS  Google Scholar 

  4. Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science. 2009;325(5942):834–40.

    Article  CAS  Google Scholar 

  5. Dekker FJ, Haisma HJ. Histone acetyl transferases as emerging drug targets. Drug Discov Today. 2009;14(19):942–8.

    Article  CAS  Google Scholar 

  6. Falkenberg KJ, Johnstone RW. Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat Rev Drug Discov. 2014;13(9):673–91.

    Article  CAS  Google Scholar 

  7. Gryder BE, Sodji QH, Oyelere AK. Targeted cancer therapy: giving histone deacetylase inhibitors all they need to succeed. Future Med Chem. 2012;4(4):505–24.

    Article  CAS  Google Scholar 

  8. Ratner M. Small biotech steers HDAC inhibitor to clinic. Nat Biotechnol. 2014;32(9):853–4.

    Article  CAS  Google Scholar 

  9. Yang XJ, Seto EY. HATs and HDACs: from structure, function and regulation to novel strategies for therapy and prevention. Oncogene. 2007;26(37):5310–8.

    Article  CAS  Google Scholar 

  10. Arrowsmith CH, Bountra C, Fish PV, Lee K, Schapira M. Epigenetic protein families: a new frontier for drug discovery. Nat Rev Drug Discov. 2012;11(5):384–400.

    Article  CAS  Google Scholar 

  11. Kuninger D, Lundblad J, Semirale A, Rotwein P. A non-isotopic in vitro assay for histone acetylation. J Biotechnol. 2007;131(3):253–60.

    Article  CAS  Google Scholar 

  12. Ghadiali JE, Lowe SB, Stevens MM. Quantum-dot-based FRET detection of histone acetyltransferase activity. Angew Chem Int Ed. 2011;123(15):3479–82.

    Article  Google Scholar 

  13. Zhen Z, Tang L, Long H, Jiang J. Enzymatic immuno-assembly of gold nanoparticles for visualized activity screening of histone-modifying enzymes. Anal Chem. 2012;84(8):3614–20.

    Article  CAS  Google Scholar 

  14. Wu H, Liu S, Zhu W, Jiang J, Shen G, Yu R. A sensitive electrochemical biosensor for detection of histone deacetylase activity using an acetylated peptide. Electroanalysis. 2012;24(12):2365–70.

    Article  CAS  Google Scholar 

  15. Zhang S, Wu H, Huan S, Zhang X, Shen G, Yu R. Gold nanoparticle based fluorescence resonance energy transfer immunoassay for the detection of the histone deacetylase activity using a fluorescent peptide probe. Anal Lett. 2013;46(13):2029–39.

    Article  CAS  Google Scholar 

  16. Wegener D, Hildmann C, Riester D, Schwienhorst A. Improved fluorogenic histone deacetylase assay for high-throughput-screening applications. Anal Biochem. 2003;321(2):202–8.

    Article  CAS  Google Scholar 

  17. Wegener D, Wirsching F, Riester D, Schwienhorst A. A fluorogenic histone deacetylase assay well suited for high-throughput activity screening. Chem Biol. 2003;10(1):61–8.

    Article  CAS  Google Scholar 

  18. Marcotte PA, Richardson PL, Guo J, Barrett LW, Xu N, Gunasekera A, et al. Fluorescence assay of SIRT protein deacetylases using an acetylated peptide substrate and a secondary trypsin reaction. Anal Biochem. 2004;332(1):90–9.

    Article  CAS  Google Scholar 

  19. Dose A, Jost JO, Spiess AC, Henklein P, Beyermann M, Schwarzer D. Facile synthesis of colorimetric histone deacetylase substrates. Chem Commun. 2012;48(76):9525–7.

    Article  CAS  Google Scholar 

  20. Ueki N, Lee S, Sampson NS, Hayman MJ. Selective cancer targeting with prodrugs activated by histone deacetylases and a tumour-associated protease. Nat Commun. 2013;4(4):2735.

    Google Scholar 

  21. Wang Y, Chen Y, Wang H, Cheng Y, Zhao X. Specific turn-on fluorescent probe with aggregation-induced emission characteristics for SIRT1 modulator screening and living-cell imaging. Anal Chem. 2015;87(10):5046–9.

    Article  CAS  Google Scholar 

  22. Han Y, Li P, Xu Y, Li H, Song Z, Nie Z, et al. Fluorescent nanosensor for probing histone acetyltransferase activity based on acetylation protection and magnetic graphitic nanocapsules. Small. 2015;11(7):877–85.

    Article  CAS  Google Scholar 

  23. Dhara K, Hori Y, Baba R, Kikuchi K. A fluorescent probe for detection of histone deacetylase activity based on aggregation-induced emission. Chem Commun. 2012;48(94):11534–6.

    Article  CAS  Google Scholar 

  24. Minoshima M, Matsumoto T, Kikuchi K. Development of a fluorogenic probe based on a DNA staining dye for continuous monitoring of the histone deacetylase reaction. Anal Chem. 2014;86(15):7925–30.

    Article  CAS  Google Scholar 

  25. Han Y, Li H, Hu Y, Li P, Wang H, Nie Z, et al. Time-resolved luminescence biosensor for continuous activity detection of protein acetylation-related enzymes based on DNA-sensitized terbium(III) probes. Anal Chem. 2015;87(18):9179–85.

    Article  CAS  Google Scholar 

  26. Heltweg B, Dequiedt F, Verdin E, Jung M. Nonisotopic substrate for assaying both human zinc and NAD+-dependent histone deacetylases. Anal Biochem. 2003;319(1):42–8.

    Article  CAS  Google Scholar 

  27. Heltweg B, Jung M. A homogeneous nonisotopic histone deacetylase activity assay. J Biomol Screen. 2003;8(1):89–95.

    Article  CAS  Google Scholar 

  28. Baba R, Hori Y, Kikuchi K. Intramolecular long-distance nucleophilic reactions as a rapid fluorogenic switch applicable to the detection of enzymatic activity. Chem Eur J. 2015;21(12):4695–702.

    Article  CAS  Google Scholar 

  29. Baba R, Hori Y, Mizukami S, Kikuchi K. Development of a fluorogenic probe with a transesterification switch for detection of histone deacetylase activity. J Am Chem Soc. 2012;134(35):14310–3.

    Article  CAS  Google Scholar 

  30. Rooker DR, Buccella D. Real-time detection of histone deacetylase activity with a small molecule fluorescent and spectrophotometric probe. Chem Sci. 2015. doi:10.1039/c5sc02704g.

    Google Scholar 

  31. Wu J, Zheng YG. Fluorescent reporters of the histone acetyltransferase. Anal Biochem. 2008;380(1):106–10.

    Article  CAS  Google Scholar 

  32. Wen Q, Gu Y, Tang L, Yu R, Jiang J. Peptide-templated gold nanocluster beacon as a sensitive, label-free sensor for protein post-translational modification enzymes. Anal Chem. 2013;85(24):11681–5.

    Article  CAS  Google Scholar 

  33. Zheng D, Ye Z, Yang S, Li Y, He X, Li G. An electrochemical method to evaluate p53 C-terminal domain acetylation on its DNA binding ability. Electrochem Commun. 2014;49:30–3.

    Article  CAS  Google Scholar 

  34. Minaker SA, Daze KD, Ma MC, Hof F. Antibody-free reading of the histone code using a simple chemical sensor array. J Am Chem Soc. 2012;134(28):11674–80.

    Article  CAS  Google Scholar 

  35. Kim Y, Tanner KG, Denu JM. A continuous, nonradioactive assay for histone acetyltransferases. Anal Biochem. 2000;280(2):308–14.

    Article  CAS  Google Scholar 

  36. Trievel RC, Li FY, Marmorstein R. Application of a fluorescent histone acetyltransferase assay to probe the substrate specificity of the human p300/CBP-associated factor. Anal Biochem. 2000;287(2):319–28.

    Article  CAS  Google Scholar 

  37. Gao T, Yang C, Zheng YG. Comparative studies of thiol-sensitive fluorogenic probes for HAT assays. Anal Bioanal Chem. 2013;405(4):1361–71.

    Article  CAS  Google Scholar 

  38. Chen S, Li Y, Hu Y, Han Y, Huang Y, Nie Z, et al. Nucleic acid-mimicking coordination polymer for label-free fluorescent activity assay of histone acetyltransferases. Chem Commun. 2015;51(21):4469–72.

    Article  CAS  Google Scholar 

  39. Hu Y, Chen S, Han Y, Chen H, Wang Q, Nie Z, et al. Unique electrocatalytic activity of nucleic acid-mimicking coordination polymer for sensitive detection of coenzyme A and histone acetyltransferase activity. Chem Commun. 2015. doi:10.1039/c5cc06593c.

    Google Scholar 

  40. Riester D, Hildmann C, Schwienhorst A, Meyer-Almes FJ. Histone deacetylase inhibitor assay based on fluorescence resonance energy transfer. Anal Biochem. 2007;362(1):136–41.

    Article  CAS  Google Scholar 

  41. Riester D, Hildmann C, Haus P, Galetovic A, Schober A, Schwienhorst A, et al. Non-isotopic dual parameter competition assay suitable for high-throughput screening of histone deacetylases. Bioorg Med Chem Lett. 2009;19(13):3651–6.

    Article  CAS  Google Scholar 

  42. Xie N, Elangwe EN, Asher S, Zheng YG. A dual-mode fluorescence strategy for screening HAT modulators. Bioconjug Chem. 2009;20(2):360–6.

    Article  CAS  Google Scholar 

  43. Dhalluin C, Carlson JE, Zeng L, He C, Aggarwal AK, Zhou MM. Structure and ligand of a histone acetyltransferase bromodomain. Nature. 1999;399(6735):491–6.

    Article  CAS  Google Scholar 

  44. Yang X. Lysine acetylation and the bromodomain: a new partnership for signaling. Bioessays. 2004;26(10):1076–87.

    Article  CAS  Google Scholar 

  45. Kanno T, Kanno Y, Siegel RM, Jang MK, Lenardo MJ, Ozato K. Selective recognition of acetylated histones by bromodomain proteins visualized in living cells. Mol Cell. 2004;13(1):33–43.

    Article  CAS  Google Scholar 

  46. Sasaki K, Ito T, Nishino N, Khochbin S, Yoshida M. Real-time imaging of histone H4 hyperacetylation in living cells. Proc Natl Acad Sci U S A. 2009;106(38):16257–62.

    Article  CAS  Google Scholar 

  47. Dancy BM, Crump NT, Peterson DJ, Mukherjee C, Bowers EM, Ahn YH, et al. Live-cell studies of p300/CBP histone acetyltransferase activity and inhibition. Chem Biol Chem. 2012;13(14):2113–21.

    Article  CAS  Google Scholar 

  48. Ito T, Umehara T, Sasaki K, Nakamura Y, Nishino N, Terada T, et al. Real-time imaging of histone H4K12-specific acetylation determines the modes of action of histone deacetylase and bromodomain inhibitors. Chem Biol. 2011;18(4):495–507.

    Article  CAS  Google Scholar 

  49. Nakaoka S, Sasaki K, Ito A, Nakao Y, Yoshida M. A genetically encoded FRET probe to detect intranucleosomal histone H3K9 or H3K14 acetylation using BRD4, a BET family member. ACS Chem Biol. 2015. doi:10.1021/cb501046t.

    Google Scholar 

  50. Hayashi-Takanaka Y, Yamagata K, Wakayama T, Stasevich TJ, Kainuma T, Tsurimoto T, et al. Tracking epigenetic histone modifications in single cells using Fab-based live endogenous modification labeling. Nucleic Acids Res. 2011;39(15):6475–88.

    Article  CAS  Google Scholar 

  51. Sato Y, Mukai M, Ueda J, Muraki M, Stasevich TJ, Horikoshi N, et al. Genetically encoded system to track histone modification in vivo. Sci Rep. 2013;3:2436.

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 21222507, 21175036, 21235002, and 21475038), the National Basic Research Program of China (973 Program, No. 2011CB911002), the Foundation for Innovative Research Groups of NSFC (Grant 21221003), and the Natural Science Foundation of Hunan Province (No. 2015JJ1005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhou Nie.

Ethics declarations

Conflict of Interest

The authors declare that they have no potential conflict of interest.

Additional information

Published in the topical collection featuring Young Investigators in Analytical and Bioanalytical Science with guest editors S. Daunert, A. Baeumner, S. Deo, J. Ruiz Encinar, and L. Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Han, Y., Li, Y. et al. Bioanalytical approaches for the detection of protein acetylation-related enzymes. Anal Bioanal Chem 408, 2659–2668 (2016). https://doi.org/10.1007/s00216-016-9304-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9304-7

Keywords

Navigation