Skip to main content
Log in

Metabolic profiling of ob/ob mouse fatty liver using HR-MAS 1H-NMR combined with gene expression analysis reveals alterations in betaine metabolism and the transsulfuration pathway

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Metabolic perturbations resulting from excessive hepatic fat accumulation are poorly understood. Thus, in this study, leptin-deficient ob/ob mice, a mouse model of fatty liver disease, were used to investigate metabolic alterations in more detail. Metabolites were quantified in intact liver tissues of ob/ob (n = 8) and control (n = 8) mice using high-resolution magic angle spinning (HR-MAS) 1H-NMR. In addition, after demonstrating that HR-MAS 1H-NMR does not affect RNA integrity, transcriptional changes were measured by quantitative real-time PCR on RNA extracted from the same specimens after HR-MAS 1H-NMR measurements. Importantly, the gene expression changes obtained agreed with those observed by Affymetrix microarray analysis performed on RNA isolated directly from fresh-frozen tissue. In total, 40 metabolites could be assigned in the spectra and subsequently quantified. Quantification of lactate was also possible after applying a lactate-editing pulse sequence that suppresses the lipid signal, which superimposes the lactate methyl resonance at 1.3 ppm. Significant differences were detected for creatinine, glutamate, glycine, glycolate, trimethylamine-N-oxide, dimethylglycine, ADP, AMP, betaine, phenylalanine, and uridine. Furthermore, alterations in one-carbon metabolism, supported by both metabolic and transcriptional changes, were observed. These included reduced demethylation of betaine to dimethylglycine and the reduced expression of genes coding for transsulfuration pathway enzymes, which appears to preserve methionine levels, but may limit glutathione synthesis. Overall, the combined approach is advantageous as it identifies changes not only at the single gene or metabolite level but also deregulated pathways, thus providing critical insight into changes accompanying fatty liver disease.

A Evaluation of RNA integrity before and after HR-MAS 1H-NMR of intact mouse liver tissue. B Metabolite concentrations and gene expression levels assessed in ob/ob (steatotic) and ob/+ (control) mice using HR-MAS 1H-NMR and qRT-PCR, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nagarajan P, Kumar MJM, Venkatesan R, Majundar SS, Hyal RC. Genetically modified mouse models for the study of nonalcoholic fatty liver disease. World J Gastroenterol. 2012;18(11):1141–53. doi:10.3748/wjg.v18.i11.1141.

    Article  Google Scholar 

  2. Liu Q, Bengmark S, Qu S. The role of hepatic fat accumulation in pathogenesis of non-alcoholic fatty liver disease (NAFLD). Lipids Health Dis. 2010;9(42):1–9. doi:10.1186/1476-511X-9-42.

    Google Scholar 

  3. Takahashi Y, Soejima Y, Fukusato T. Animal models of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. World J Gastroenterol. 2012;18(19):2300–8. doi:10.3748/wjg.v18.i19.2300.

    Article  Google Scholar 

  4. Sitter B, Lundgren S, Bathen TF, Halgunset J, Fjosne HE, Gribbestad IS. Comparison of HR MAS MR spectroscopic profiles of breast cancer tissue with clinical parameters. NMR Biomed. 2006;19(1):30–40. doi:10.1002/nbm.992.

    Article  CAS  Google Scholar 

  5. Choi JS, Baek HM, Kim S, Kim MJ, Youk JH, Moon HJ, et al. HR-MAS MR spectroscopy of breast cancer tissue obtained with core needle biopsy: correlation with prognostic factors. PLoS ONE. 2012;7(12):1–9. doi:10.1371/journal.pone.0051712.

    Article  Google Scholar 

  6. Cao MD, Sitter B, Bathen TF, Bofin A, Lonning PE, Lundgren S, et al. Predicting long-term survival and treatment response in breast cancer patients receiving neoadjuvant chemotherapy by MR metabolic profiling. NMR Biomed. 2012;25(2):369–78. doi:10.1002/nbm.1762.

    Article  CAS  Google Scholar 

  7. Swanson MG, Zektzer AS, Tabatabai ZL, Simko J, Jarso S, Keshari KR, et al. Quantitative analysis of prostate metabolites using 1H HR-MAS spectroscopy. Magn Reson Med. 2006;55(6):1257–64. doi:10.1002/mrm.20909.

    Article  CAS  Google Scholar 

  8. Opstad KS, Bel BA, Griffiths JR, Howe FA. An investigation of human brain tumour lipids by high-resolution magic angle spinning 1H MRS and histological analysis. NMR Biomed. 2008;21(7):677–85. doi:10.1002/nbm.1239.

    Article  CAS  Google Scholar 

  9. Santos CF, Kurhanewicz J, Tabatabai ZL, Simko JP, Keshari KR, Gbegnon A, et al. Metabolic, pathologic, and genetic analysis of prostate tissues: quantitative evaluation of histopathologic and mRNA integrity after HR-MAS spectroscopy. NMR Biomed. 2010;23(4):391–8. doi:10.1002/nbm.1474.

    CAS  Google Scholar 

  10. He QH, Shungu DC, Vanzijl PCM, Bhujwalla ZM, Glickson JD. Single-scan in-vivo lactate editing with complete lipid and water suppression by selective multiple-quantum-coherence transfer (Sel-Mqc) with application to tumors. J Magn Reson Ser B. 1995;106(3):203–11. doi:10.1006/jmrb.1995.1035.

    Article  CAS  Google Scholar 

  11. Boer VO, Luijten PR, Klomp DWJ. Refocused double-quantum editing for lactate detection at 7 T. Magn Reson Med. 2013;69(1):1–6. doi:10.1002/mrm.24227.

    Article  CAS  Google Scholar 

  12. Holbach M, Lambert J, Suter D. Optimized multiple-quantum filter for robust selective excitation of metabolite signals. J Magn Reson. 2014;243:8–16. doi:10.1016/j.jmr.2014.03.007.

    Article  CAS  Google Scholar 

  13. Holbach M, Lambert J, Johst S, Ladd ME, Suter D. Optimized selective lactate excitation with a refocused multiple-quantum filter. J Magn Reson. 2015;255:34–8. doi:10.1016/j.jmr.2015.03.004.

    Article  CAS  Google Scholar 

  14. Schroeder A, Mueller O, Stocker S, Salowsky R, Leiber M, Gassmann M, et al. The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol Biol. 2006;7(3):1–14. doi:10.1186/1471-2199-7-3.

    Google Scholar 

  15. Godoy P, Widera A, Schmidt-Heck W, Campos G, Meyer C, Cadenas C, et al. Gene network activity in cultivated primary hepatocytes is highly similar to diseased mammalian liver tissue. Arch Toxicol. 2016;90(10):2513–29. doi:10.1007/s00204-016-1761-4.

    Article  CAS  Google Scholar 

  16. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics. 2003;4(2):249–64. doi:10.1093/biostatistics/4.2.249.

    Article  Google Scholar 

  17. Smyth GK, Michaud J, Scott HS. Use of within-array replicate spots for assessing differential expression in microarray experiments. Bioinformatics. 2005;21(9):2067–75. doi:10.1093/bioinformatics/bti270.

    Article  CAS  Google Scholar 

  18. Benjamini Y, Hochberg Y. Controlling the false discovery rate—a practical and powerful approach to multiple testing. J Roy Stat Soc B Met. 1995;57(1):289–300.

    Google Scholar 

  19. Borgan E, Sitter B, Lingjaerde OC, Johnsen H, Lundgren S, Bathen TF et al. Merging transcriptomics and metabolomics—advances in breast cancer profiling. BMC Cancer. 2010;10(628):1–14. doi:10.1186/1471-2407-10-628.

  20. Tufts L, Vishnudas KS, Fu E, Kurhanewicz J, Ries M, Alliston T, et al. Correlating high-resolution magic angle spinning NMR spectroscopy and gene analysis in osteoarthritic cartilage. NMR Biomed. 2015;28(5):523–8. doi:10.1002/nbm.3285.

    Article  CAS  Google Scholar 

  21. Yang JS, Kim JT, Jeon J, Park HS, Kang GH, Park KS, et al. Changes in hepatic gene expression upon oral administration of taurine-conjugated ursodeoxycholic acid in ob/ob mice. PLoS ONE. 2010;5(11):1–10. doi:10.1371/journal.pone.0013858.

    CAS  Google Scholar 

  22. Zhang J, Wu Y, Zhang Y, Leroith D, Bernlohr DA, Chen X. The role of lipocalin 2 in the regulation of inflammation in adipocytes and macrophages. Mol Endocrinol. 2008;22(6):1416–26. doi:10.1210/me.2007-0420.

    Article  CAS  Google Scholar 

  23. Xu N, Nilsson-Ehle P, Hurtig M, Ahren B. Both leptin and leptin-receptor are essential for apolipoprotein M expression in vivo. Biochem Biophys Res Commun. 2004;321(4):916–21. doi:10.1016/j.bbrc.2004.06.180.

    Article  CAS  Google Scholar 

  24. Wang YQ, Van Oort MM, Yao MH, Van der Horst DJ, Rodenburg KW. Insulin and chromium picolinate induce translocation of CD36 to the plasma membrane through different signaling pathways in 3T3-L1 adipocytes, and with a differential functionality of the CD36. Biol Trace Elem Res. 2011;142(3):735–47. doi:10.1007/s12011-010-8809-8.

    Article  CAS  Google Scholar 

  25. Steinbusch LKM, Schwenk RW, Ouwens DM, Diamant M, Glatz JFC, Luiken JJFP. Subcellular trafficking of the substrate transporters GLUT4 and CD36 in cardiomyocytes. Cell Mol Life Sci. 2011;68(15):2525–38. doi:10.1007/s00018-011-0690-x.

    Article  CAS  Google Scholar 

  26. Miyazaki M, Dobrzyn A, Elias PM, Ntambi JM. Stearoyl-CoA desaturase-2 gene expression is required for lipid synthesis during early skin and liver development. Proc Natl Acad Sci U S A. 2005;102(35):12501–6. doi:10.1073/pnas.0503132102.

    Article  CAS  Google Scholar 

  27. Ntambi JM, Miyazaki A, Dobrzyn A. Regulation of stearoyl-CoA desaturase expression. Lipids. 2004;39(11):1061–5. doi:10.1007/s11745-004-1331-2.

    Article  CAS  Google Scholar 

  28. VerHague MA, Cheng DM, Weinberg RB, Shelness GS. Apolipoprotein A-IV expression in mouse liver enhances triglyceride secretion and reduces hepatic lipid content by promoting very low density lipoprotein particle expansion. Arterioscler Throm Vasc Biol. 2013;33(11):2501–8. doi:10.1161/Atvbaha.113.301948.

    Article  CAS  Google Scholar 

  29. Williams KT, Schalinske KL. New insights into the regulation of methyl group and homocysteine metabolism. J Nutr. 2007;137(2):311–4.

    CAS  Google Scholar 

  30. Lee JH, Friso S, Choi SW. Epigenetic mechanisms underlying the link between non-alcoholic fatty liver diseases and nutrition. Nutrients. 2014;6(8):3303–25. doi:10.3390/nu6083303.

    Article  Google Scholar 

  31. McBean GJ. The transsulfuration pathway: a source of cysteine for glutathione in astrocytes. Amino Acids. 2012;42(1):199–205. doi:10.1007/s00726-011-0864-8.

    Article  CAS  Google Scholar 

  32. Serviddio G, Blonda M, Bellanti F, Villani R, Iuliano L, Vendemiale G. Oxysterols and redox signaling in the pathogenesis of non-alcoholic fatty liver disease. Free Radic Res. 2013;47(11):881–93. doi:10.3109/10715762.2013.835048.

    Article  CAS  Google Scholar 

  33. Kempson SA, Zhou Y, Danbolt NC. The betaine/GABA transporter and betaine: roles in brain, kidney, and liver. Front Physiol. 2014;5(159):1–16. doi:10.3389/fphys.2014.00159.

    Google Scholar 

  34. Wagner CA, Lukewille U, Kaltenbach S, Moschen I, Broer A, Risler T, et al. Functional and pharmacological characterization of human Na+-carnitine cotransporter hOCTN2. Am J Phys Renal. 2000;279(3):F584–91.

    CAS  Google Scholar 

  35. Beard RS, Bearden SE. Vascular complications of cystathionine beta-synthase deficiency: future directions for homocysteine-to-hydrogen sulfide research. Am J Phys Heart C. 2011;300(1):H13–26. doi:10.1152/ajpheart.00598.2010.

    Article  CAS  Google Scholar 

  36. Willebrords J, Pereira IVA, Maes M, Yanguas SC, Colle I, Van Den Bossche B, et al. Strategies, models and biomarkers in experimental non-alcoholic fatty liver disease research. Prog Lipid Res. 2015;59:106–25. doi:10.1016/j.plipres.2015.05.002.

    Article  CAS  Google Scholar 

  37. Del Chierico F, Nobili V, Vernocchi P, Russo A, De Stefanis C, Gnani, et al. Gut microbiota profiling of pediatric NAFLD and obese patients unveiled by an integrated meta-omics based approach. Hepatology. 2016. doi:10.1002/hep.28572.

    Google Scholar 

  38. Martel C, Degli Esposti D, Bouchet A, Brenner C, Lemoine A. Non-alcoholic steatohepatitis: new insights from OMICS studies. Curr Pharm Biotechnol. 2012;13(5):726–35.

    Article  CAS  Google Scholar 

  39. Li HK, Xie ZQ, Lin JC, Song HG, Wang Q, Wang K, et al. Transcriptomic and metabonomic profiling of obesity-prone and obesity-resistant rats under high fat diet. J Proteome Res. 2008;7(11):4775–83. doi:10.1021/pr800352k.

    Article  CAS  Google Scholar 

  40. Beckonert O, Keun HC, Ebbels TMD, Bundy JG, Holmes E, Lindon JC, et al. Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat Protoc. 2007;2(11):2692–703. doi:10.1038/nprot.2007.376.

    Article  CAS  Google Scholar 

  41. Naz S, Garcia A, Barbas C. Multiplatform analytical methodology for metabolic fingerprinting of lung tissue. Anal Chem. 2013;85(22):10941–8. doi:10.1021/ac402411n.

    Article  CAS  Google Scholar 

  42. Wu H, Xue RY, Lu CL, Deng CH, Liu TT, Zeng HZ, et al. Metabolomic study for diagnostic model of oesophageal cancer using gas chromatography/mass spectrometry. J Chromatogr B. 2009;877(27):3111–7. doi:10.1016/j.jchromb.2009.07.039.

    Article  CAS  Google Scholar 

  43. Hirayama A, Kami K, Sugimoto M, Sugawara M, Toki N, Onozuka H, et al. Quantitative metabolome profiling of colon and stomach cancer microenvironment by capillary electrophoresis time-of-flight mass spectrometry. Cancer Res. 2009;69(11):4918–25. doi:10.1158/0008-5472.CAN-08-4806.

    Article  CAS  Google Scholar 

  44. Gowda GAN, Raftery D. Can NMR solve some significant challenges in metabolomics? J Magn Reson. 2015;260:144–60. doi:10.1016/j.jmr.2015.07.014.

    Article  Google Scholar 

  45. Giesbertz P, Padberg I, Rein D, Ecker J, Hofle A, Spanier B, et al. Metabolite profiling in plasma and tissues of ob/ob and db/db mice identifies novel markers of obesity and type 2 diabetes. Diabetologia. 2015;58(9):2133–43. doi:10.1007/s00125-015-3656-y.

    Article  CAS  Google Scholar 

  46. Bravo E, Palleschi S, Aspichueta P, Buque X, Rossi B, Cano A, et al. High fat diet-induced non alcoholic fatty liver disease in rats is associated with hyperhomocysteinemia caused by down regulation of the transsulphuration pathway. Lipids Health Dis. 2011;10(60):1–6. doi:10.1186/1476-511X-10-60.

    Google Scholar 

  47. Niu SW, Wang LQ, He M, Peng YZ, Li SD. Exendin-4 regulates redox homeostasis in rats fed with high-fat diet. Acta Biochim Biophys Sin. 2015;47(6):397–403. doi:10.1093/abbs/gmv027.

    Article  Google Scholar 

  48. Murray TVA, Dong XB, Sawyer GJ, Caldwell A, Halket J, Sherwood R, et al. NADPH oxidase 4 regulates homocysteine metabolism and protects against acetaminophen-induced liver damage in mice. Free Radic Biol Med. 2015;89:918–30. doi:10.1016/j.freeradbiomed.2015.09.015.

    Article  CAS  Google Scholar 

  49. Miller CM, Szegedi SS, Garrow TA. Conformation-dependent inactivation of human betaine-homocysteine S-methyltransferase by hydrogen peroxide in vitro. Biochem J. 2005;392:443–8. doi:10.1042/Bj20050356.

    Article  CAS  Google Scholar 

  50. Castro C, Millian NS, Garrow TA. Liver betaine-hornocysteine S-methyltransferase activity undergoes a redox switch at the active site zinc. Arch Biochem Biophys. 2008;472(1):26–33. doi:10.1016/j.abb.2008.01.017.

    Article  CAS  Google Scholar 

  51. Fernandez-Roig S, Cavalle-Busquets P, Fernandez-Ballart JD, Ballesteros M, Berrocal-Zaragoza MI, Salat-Batlle J, et al. Low folate status enhances pregnancy changes in plasma betaine and dimethylglycine concentrations and the association between betaine and homocysteine. Am J Clin Nutr. 2013;97(6):1252–9. doi:10.3945/ajcn.112.054189.

    Article  CAS  Google Scholar 

  52. Innis SM, Hasman D. Evidence of choline depletion and reduced betaine and dimethylglycine with increased homocysteine in plasma of children with cystic fibrosis. J Nutr. 2006;136(8):2226–31.

    CAS  Google Scholar 

  53. McGregor DO, Dellow WJ, Lever M, George PM, Robson RA, Chambers ST. Dimethylglycine accumulates in uremia and predicts elevated plasma homocysteine concentrations. Kidney Int. 2001;59(6):2267–72. doi:10.1046/j.1523-1755.2001.0590062267.x.

    Article  CAS  Google Scholar 

  54. Day CR, Kempson SA. Betaine chemistry, roles, and potential use in liver disease. BBA-Gen Subjects. 2016;1860(6):1098–106. doi:10.1016/j.bbagen.2016.02.001.

    Article  CAS  Google Scholar 

  55. Schafer C, Hoffmann L, Heldt K, Lornejad-Schafer MR, Brauers G, Gehrmann T, et al. Osmotic regulation of betaine homocysteine-S-methyltransferase expression in H4IIE rat hepatoma cells. Am J Phys Gastrointest Liver. 2007;292(4):G1089–98. doi:10.1152/ajpgi.00088.2006.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Agapios Sachinidis at the Center of Physiology and Pathophysiology of the Medical Faculty at the University of Cologne for performing the gene microarray analysis. Financial support by the Ministerium für Innovation, Wissenschaft und Forschung des Landes Nordrhein-Westfalen, the Senatsverwaltung für Wirtschaft, Technologie und Forschung des Landes Berlin, and the Bundesministerium für Bildung und Forschung (01KU1216I) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikheil Gogiashvili.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Roland Hergenröder and Cristina Cadenas contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1274 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gogiashvili, M., Edlund, K., Gianmoena, K. et al. Metabolic profiling of ob/ob mouse fatty liver using HR-MAS 1H-NMR combined with gene expression analysis reveals alterations in betaine metabolism and the transsulfuration pathway. Anal Bioanal Chem 409, 1591–1606 (2017). https://doi.org/10.1007/s00216-016-0100-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-0100-1

Keywords

Navigation