Skip to main content
Log in

Monitoring doxorubicin cellular uptake and trafficking using in vitro Raman microspectroscopy: short and long time exposure effects on lung cancer cell lines

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Raman microspectroscopy is a non-invasive, in vitro analytical tool which is being increasingly explored for its potential in clinical applications and monitoring the uptake, mechanism of action and cellular interaction at a molecular level of chemotherapeutic drugs, ultimately as a potential label-free preclinical screening and companion diagnostic tool. In this study, doxorubicin (DOX), a “gold standard” chemotherapeutic drug, is employed as a model in the in vitro lung cancer cell line A549 in order to demonstrate the potential of Raman microspectroscopy to screen and identify spectroscopic markers of its trafficking and mechanism of action. Confocal laser scanning microscopy (CLSM) was used in parallel to illustrate the uptake and subcellular localisation, and cytotoxicity assays were employed to establish the toxicity profiles for early and late exposure times of A549 to DOX. Multivariate statistical analysis, consisting of principal components analysis (PCA), partial least squares regression (PLSR) and independent component analysis (ICA), was used to elucidate the spectroscopic signatures associated with DOX uptake and subcellular interaction. Raman spectroscopic profiling illustrates both drug kinetics and its pharmacodynamics in the cell and associated biochemical changes, demonstrating that DOX is mainly localised in the nuclear area, saturating the nucleolus first, within ~6 h of exposure, before the surrounding nuclear areas after ~12 h, and only accumulates in the cytoplasm after 48 h. PLSR over varying time intervals enables identification of DOX–DNA binding at early stages of exposure (0–12 h), while regression over longer time periods (24–72 h) reveals spectroscopic signatures associated with the metabolic cellular response.

Subcellular uptake of doxorubicin, and changes in biomolecular signatures in the nucleolus, as monitored by Raman spectroscopy

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Carvalho C, Santos RX, Cardoso S, Correia S, Oliveira PJ, Santos MS, et al. Doxorubicin: the good, the bad and the ugly effect. Curr Med Chem. 2009;16(25):3267–85.

    Article  CAS  Google Scholar 

  2. Mitry MA, Edwards JG. Doxorubicin induced heart failure: phenotype and molecular mechanisms. Int J Cardiol Heart Vasc. 2016;10:17–24. doi:10.1016/j.ijcha.2015.11.004.

    Google Scholar 

  3. Carvalho FS, Burgeiro A, Garcia R, Moreno AJ, Carvalho RA, Oliveira PJ. Doxorubicin-induced cardiotoxicity: from bioenergetic failure and cell death to cardiomyopathy. Med Res Rev. 2014;34(1):106–35. doi:10.1002/med.21280.

    Article  CAS  Google Scholar 

  4. Hofman J, Skarka A, Havrankova J, Wsol V. Pharmacokinetic interactions of breast cancer chemotherapeutics with human doxorubicin reductases. Biochem Pharmacol. 2015;96(3):168–78. doi:10.1016/j.bcp.2015.05.005.

    Article  CAS  Google Scholar 

  5. Umsumarng S, Pitchakarn P, Sastraruji K, Yodkeeree S, Ung AT, Pyne SG, et al. Reversal of human multi-drug resistance leukaemic cells by stemofoline derivatives via inhibition of P-glycoprotein function. Basic Clin Pharmacol Toxicol. 2015;116(5):390–7. doi:10.1111/bcpt.12331.

    Article  CAS  Google Scholar 

  6. Schiller JH, Gandara DR, Goss GD, Vokes EE. Non-small-cell lung cancer: then and now. J Clin Oncol. 2013;31(8):981–3. doi:10.1200/jco.2012.47.5772.

    Article  Google Scholar 

  7. Tacar O, Sriamornsak P, Dass CR. Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems. J Pharm Pharmacol. 2013;65(2):157–70. doi:10.1111/j.2042-7158.2012.01567.x.

    Article  CAS  Google Scholar 

  8. Golunski G, Borowik A, Derewonko N, Kawiak A, Rychlowski M, Woziwodzka A, et al. Pentoxifylline as a modulator of anticancer drug doxorubicin. Part II: reduction of doxorubicin DNA binding and alleviation of its biological effects. Biochimie. 2016;123:95–102. doi:10.1016/j.biochi.2016.02.003.

    Article  CAS  Google Scholar 

  9. Akhter MZ, Rajeswari MR. Interaction of doxorubicin with a regulatory element of hmga1 and its in vitro anti-cancer activity associated with decreased HMGA1 expression. J Photochem Photobiol B Biol. 2014;141:36–46. doi:10.1016/j.jphotobiol.2014.08.026.

    Article  CAS  Google Scholar 

  10. Burger K, Muhl B, Harasim T, Rohrmoser M, Malamoussi A, Orban M, et al. Chemotherapeutic drugs inhibit ribosome biogenesis at various levels. J Biol Chem. 2010;285(16):12416–25. doi:10.1074/jbc.M109.074211.

    Article  CAS  Google Scholar 

  11. El-Awady RA, Semreen MH, Saber-Ayad MM, Cyprian F, Menon V, Al-Tel TH. Modulation of DNA damage response and induction of apoptosis mediates synergism between doxorubicin and a new imidazopyridine derivative in breast and lung cancer cells. DNA Repair. 2016;37:1–11. doi:10.1016/j.dnarep.2015.10.004.

    Article  CAS  Google Scholar 

  12. Farhane Z, Bonnier F, Maher MA, Bryant J, Casey A, Byrne HJ. Differentiating responses of lung cancer cell lines to doxorubicin exposure: in vitro Raman micro spectroscopy, oxidative stress and bcl-2 protein expression. J Biophotonics. 2016. doi:10.1002/jbio.201600019.

    Google Scholar 

  13. Yadav N, Pliss A, Kuzmin A, Rapali P, Sun L, Prasad P, et al. Transformations of the macromolecular landscape at mitochondria during DNA-damage-induced apoptotic cell death. Cell Death Dis. 2014;5, e1453. doi:10.1038/cddis.2014.405.

    Article  CAS  Google Scholar 

  14. Quin JE, Devlin JR, Cameron D, Hannan KM, Pearson RB, Hannan RD. Targeting the nucleolus for cancer intervention. Biochim Biophys Acta. 2014;1842(6):802–16. doi:10.1016/j.bbadis.2013.12.009.

    Article  CAS  Google Scholar 

  15. Lo SJ, Lee CC, Lai HJ. The nucleolus: reviewing oldies to have new understandings. Cell Res. 2006;16(6):530–8. doi:10.1038/sj.cr.7310070.

    Article  CAS  Google Scholar 

  16. Hein N, Hannan KM, George AJ, Sanij E, Hannan RD. The nucleolus: an emerging target for cancer therapy. Trends Mol Med. 2013;19(11):643–54. doi:10.1016/j.molmed.2013.07.005.

    Article  CAS  Google Scholar 

  17. Orsolic I, Jurada D, Pullen N, Oren M, Eliopoulos AG, Volarevic S. The relationship between the nucleolus and cancer: current evidence and emerging paradigms. Semin Cancer Biol. 2016;37-38:36–50. doi:10.1016/j.semcancer.2015.12.004.

    Article  CAS  Google Scholar 

  18. Woods SJ, Hannan KM, Pearson RB, Hannan RD. The nucleolus as a fundamental regulator of the p53 response and a new target for cancer therapy. Biochim Biophys Acta. 2015;1849(7):821–9. doi:10.1016/j.bbagrm.2014.10.007.

    Article  CAS  Google Scholar 

  19. Farhane Z, Bonnier F, Casey A, Maguire A, O'Neill L, Byrne HJ. Cellular discrimination using in vitro Raman micro spectroscopy: the role of the nucleolus. Analyst. 2015;140(17):5908–19. doi:10.1039/C5AN01157D.

    Article  CAS  Google Scholar 

  20. Bolukbas DA, Meiners S. Lung cancer nanomedicine: potentials and pitfalls. Nanomedicine (Lond). 2015;10(21):3203–12. doi:10.2217/nnm.15.155.

    Article  Google Scholar 

  21. Huser T, Chan J. Raman spectroscopy for physiological investigations of tissues and cells. Adv Drug Deliv Rev. 2015;89:57–70. doi:10.1016/j.addr.2015.06.011.

    Article  CAS  Google Scholar 

  22. Byrne JH, Ostrowska MK, Nawaz H, Dorney J, Meade DA, Bonnier F, et al. Vibrational spectroscopy: disease diagnostics and beyond. In: Baranska M, editor. Optical spectroscopy and computational methods in biology and medicine. Dordrecht: Springer Netherlands; 2014. p. 355–99.

    Chapter  Google Scholar 

  23. Gala U, Chauhan H. Principles and applications of Raman spectroscopy in pharmaceutical drug discovery and development. Expert Opin Drug Discov. 2015;10(2):187–206. doi:10.1517/17460441.2015.981522.

    Article  CAS  Google Scholar 

  24. Notingher I. Raman spectroscopy cell-based biosensors. Sensors (Basel). 2007;7(8):1343–58.

    Article  CAS  Google Scholar 

  25. Vankeirsbilck T, Vercauteren A, Baeyens W, Van der Weken G, Verpoort F, Vergote G, et al. Applications of Raman spectroscopy in pharmaceutical analysis. Trends Anal Chem. 2002;21(12):869–77. doi:10.1016/S0165-9936(02)01208-6.

    Article  CAS  Google Scholar 

  26. Bhumika DP, Priti JM. An overview: application of Raman spectroscopy in pharmaceutical field. Curr Pharm Anal. 2010;6(2):131–41. doi:10.2174/157341210791202654.

    Article  Google Scholar 

  27. Kallaway C, Almond LM, Barr H, Wood J, Hutchings J, Kendall C, et al. Advances in the clinical application of Raman spectroscopy for cancer diagnostics. Photodiag Photodyn Ther. 2013;10(3):207–19. doi:10.1016/j.pdpdt.2013.01.008.

    Article  CAS  Google Scholar 

  28. Pence I, Mahadevan-Jansen A. Clinical instrumentation and applications of Raman spectroscopy. Chem Soc Rev. 2016;45(7):1958–79. doi:10.1039/c5cs00581g.

    Article  CAS  Google Scholar 

  29. Farhane Z, Bonnier F, Casey A, Byrne HJ. Raman micro spectroscopy for in vitro drug screening: subcellular localisation and interactions of doxorubicin. Analyst. 2015;140(12):4212–23. doi:10.1039/C5AN00256G.

    Article  CAS  Google Scholar 

  30. Jorgensen JT. Clinical application of companion diagnostics. Trends Mol Med. 2015;21(7):405–7. doi:10.1016/j.molmed.2015.05.003.

    Article  Google Scholar 

  31. Trusheim MR, Berndt ER. The clinical benefits, ethics, and economics of stratified medicine and companion diagnostics. Drug Discov Today. 2015;20(12):1439–50. doi:10.1016/j.drudis.2015.10.017.

    Article  Google Scholar 

  32. Suggitt M, Bibby MC. 50 years of preclinical anticancer drug screening: empirical to target-driven approaches. Clin Cancer Res. 2005;11(3):971–81.

    CAS  Google Scholar 

  33. Zhang D, Luo G, Ding X, Lu C. Preclinical experimental models of drug metabolism and disposition in drug discovery and development. Acta Pharm Sin B. 2012;2(6):549–61. doi:10.1016/j.apsb.2012.10.004.

    Article  Google Scholar 

  34. Bonnier F, Byrne HJ. Understanding the molecular information contained in principal component analysis of vibrational spectra of biological systems. Analyst. 2012;137(2):322–32. doi:10.1039/c1an15821j.

    Article  CAS  Google Scholar 

  35. Muratore M. Raman spectroscopy and partial least squares analysis in discrimination of peripheral cells affected by Huntington's disease. Anal Chim Acta. 2013;793:1–10. doi:10.1016/j.aca.2013.06.012.

    Article  CAS  Google Scholar 

  36. Keating ME, Nawaz H, Bonnier F, Byrne HJ. Multivariate statistical methodologies applied in biomedical Raman spectroscopy: assessing the validity of partial least squares regression using simulated model datasets. Analyst. 2015;140(7):2482–92. doi:10.1039/C4AN02167C.

    Article  CAS  Google Scholar 

  37. Nawaz H, Bonnier F, Meade AD, Lyng FM, Byrne HJ. Comparison of subcellular responses for the evaluation and prediction of the chemotherapeutic response to cisplatin in lung adenocarcinoma using Raman spectroscopy. Analyst. 2011;136(12):2450–63. doi:10.1039/c1an15104e.

    Article  CAS  Google Scholar 

  38. Boiret M, Rutledge DN, Gorretta N, Ginot YM, Roger JM. Application of independent component analysis on Raman images of a pharmaceutical drug product: pure spectra determination and spatial distribution of constituents. J Pharm Biomed Anal. 2014;90:78–84. doi:10.1016/j.jpba.2013.11.025.

    Article  CAS  Google Scholar 

  39. Parastar H, Jalali-Heravi M, Tauler R. Is independent component analysis appropriate for multivariate resolution in analytical chemistry? Trends Anal Chem. 2012;31:134–43. doi:10.1016/j.trac.2011.07.010.

    Article  CAS  Google Scholar 

  40. Wang G, Ding Q, Hou Z. Independent component analysis and its applications in signal processing for analytical chemistry. Trends Anal Chem. 2008;27(4):368–76. doi:10.1016/j.trac.2008.01.009.

    Article  CAS  Google Scholar 

  41. Green PS, Leeuwenburgh C. Mitochondrial dysfunction is an early indicator of doxorubicin-induced apoptosis. Biochim Biophys Acta. 2002;1588(1):94–101.

    Article  CAS  Google Scholar 

  42. Berthiaume JM, Wallace KB. Adriamycin-induced oxidative mitochondrial cardiotoxicity. Cell Biol Toxicol. 2007;23(1):15–25. doi:10.1007/s10565-006-0140-y.

    Article  CAS  Google Scholar 

  43. Akbari R, Javar HJ. Efficacy of capecitabine and 5-fluorouracil (5-FU) on the human breast cancer cell line (MCF7) – effect of concentration. Am J Res Commun. 2013;1:6.

    Google Scholar 

  44. Sieuwerts AM, Klijn JG, Peters HA, Foekens JA. The MTT tetrazolium salt assay scrutinized: how to use this assay reliably to measure metabolic activity of cell cultures in vitro for the assessment of growth characteristics, IC50-values and cell survival. Eur J Clin Chem Clin Biochem. 1995;33(11):813–23.

    CAS  Google Scholar 

  45. Twentyman PR, Luscombe M. A study of some variables in a tetrazolium dye (MTT) based assay for cell growth and chemosensitivity. Br J Cancer. 1987;56(3):279–85.

    Article  CAS  Google Scholar 

  46. Sardao VA, Oliveira PJ, Holy J, Oliveira CR, Wallace KB. Morphological alterations induced by doxorubicin on H9c2 myoblasts: nuclear, mitochondrial, and cytoskeletal targets. Cell Biol Toxicol. 2009;25(3):227–43. doi:10.1007/s10565-008-9070-1.

    Article  CAS  Google Scholar 

  47. Olson MO, Dundr M, Szebeni A. The nucleolus: an old factory with unexpected capabilities. Trends Cell Biol. 2000;10(5):189–96.

    Article  CAS  Google Scholar 

  48. Glitsch M. Essentials of cell physiology. Surgery (Oxford). 2016. doi:10.1016/j.mpsur.2016.04.014.

    Google Scholar 

  49. Verrier S, Notingher I, Polak JM, Hench LL. In situ monitoring of cell death using Raman microspectroscopy. Biopolymers. 2004;74(1-2):157–62. doi:10.1002/bip.20063.

    Article  CAS  Google Scholar 

  50. Guo J, Cai W, Du B, Qian M, Sun Z. Raman spectroscopic investigation on the interaction of malignanthepatocytes with doxorubicin. Biophys Chem. 2009;140(1–3):57–61. doi:10.1016/j.bpc.2008.11.005.

    Article  CAS  Google Scholar 

  51. Notingher I, Verrier S, Haque S, Polak JM, Hench LL. Spectroscopic study of human lung epithelial cells (A549) in culture: living cells versus dead cells. Biopolymers. 2003;72(4):230–40. doi:10.1002/bip.10378.

    Article  CAS  Google Scholar 

  52. Wallace KB. Doxorubicin-induced cardiac mitochondrionopathy. Pharmacol Toxicol. 2003;93(3):105–15.

    Article  CAS  Google Scholar 

  53. Eom YW, Kim MA, Park SS, Goo MJ, Kwon HJ, Sohn S, et al. Two distinct modes of cell death induced by doxorubicin: apoptosis and cell death through mitotic catastrophe accompanied by senescence-like phenotype. Oncogene. 2005;24(30):4765–77. doi:10.1038/sj.onc.1208627.

    Article  CAS  Google Scholar 

  54. El-Kareh AW, Secomb TW. Two-mechanism peak concentration model for cellular pharmacodynamics of doxorubicin. Neoplasia. 2005;7(7):705–13.

    Article  CAS  Google Scholar 

  55. Zenebergh A, Baurain R, Trouet A. Cellular pharmacology of detorubicin and doxorubicin in L1210 cells. Eur J Cancer Clin Oncol. 1984;20(1):115–21.

    Article  CAS  Google Scholar 

  56. Matthews Q, Jirasek A, Lum J, Duan X, Brolo AG. Variability in Raman spectra of single human tumor cells cultured in vitro: correlation with cell cycle and culture confluency. Appl Spectrosc. 2010;64(8):871–87. doi:10.1366/000370210792080966.

    Article  CAS  Google Scholar 

  57. Kann B, Offerhaus HL, Windbergs M, Otto C. Raman microscopy for cellular investigations — from single cell imaging to drug carrier uptake visualization. Adv Drug Deliv Rev. 2015;89:71–90. doi:10.1016/j.addr.2015.02.006.

    Article  CAS  Google Scholar 

  58. Boulon S, Westman BJ, Hutten S, Boisvert FM, Lamond AI. The nucleolus under stress. Mol Cell. 2010;40(2):216–27. doi:10.1016/j.molcel.2010.09.024.

    Article  CAS  Google Scholar 

  59. Movasaghi Z, Rehman S, Rehman IU. Raman spectroscopy of biological tissues. Appl Spectrosc Rev. 2007;42(5):493–541. doi:10.1080/05704920701551530.

    Article  CAS  Google Scholar 

  60. Dellaire G, Bazett-Jones DP. Beyond repair foci: subnuclear domains and the cellular response to DNA damage. Cell Cycle. 2007;6(15):1864–72. doi:10.4161/cc.6.15.4560.

    Article  CAS  Google Scholar 

  61. Moritz TJ, Taylor DS, Krol DM, Fritch J, Chan JW. Detection of doxorubicin-induced apoptosis of leukemic T-lymphocytes by laser tweezers Raman spectroscopy. Biomed Opt Express. 2010;1(4):1138–47. doi:10.1364/BOE.1.001138.

    Article  CAS  Google Scholar 

  62. Fadok VA, Bratton DL, Frasch SC, Warner ML, Henson PM. The role of phosphatidylserine in recognition of apoptotic cells by phagocytes. Cell Death Differ. 1998;5(7):551–62. doi:10.1038/sj.cdd.4400404.

    Article  CAS  Google Scholar 

  63. Kagan VE, Fabisiak JP, Shvedova AA, Tyurina YY, Tyurin VA, Schor NF, et al. Oxidative signaling pathway for externalization of plasma membrane phosphatidylserine during apoptosis. FEBS Lett. 2000;477(1-2):1–7.

    Article  CAS  Google Scholar 

  64. Maxfield FR, Tabas I. Role of cholesterol and lipid organization in disease. Nature. 2005;438(7068):612–21. doi:10.1038/nature04399.

    Article  CAS  Google Scholar 

  65. Tabas I. Apoptosis and plaque destabilization in atherosclerosis: the role of macrophage apoptosis induced by cholesterol. Cell Death Differ. 2004;11 Suppl 1:S12–6. doi:10.1038/sj.cdd.4401444.

    Article  CAS  Google Scholar 

  66. Yang F, Teves SS, Kemp CJ, Henikoff S. Doxorubicin, DNA torsion, and chromatin dynamics. Biochim Biophys Acta. 2014;1845(1):84–9. doi:10.1016/j.bbcan.2013.12.002.

    CAS  Google Scholar 

  67. Cummings J, Bartoszek A, Smyth JF. Determination of covalent binding to intact DNA, RNA, and oligonucleotides by intercalating anticancer drugs using high-performance liquid chromatography. Studies with doxorubicin and NADPH cytochrome P-450 reductase. Anal Biochem. 1991;194(1):146–55.

    Article  CAS  Google Scholar 

  68. Gigli M, Doglia SM, Millot JM, Valentini L, Manfait M. Quantitative study of doxorubicin in living cell nuclei by microspectrofluorometry. Biochim Biophys Acta. 1988;950(1):13–20.

    Article  CAS  Google Scholar 

  69. Hovorka O, Subr V, Vetvicka D, Kovar L, Strohalm J, Strohalm M, et al. Spectral analysis of doxorubicin accumulation and the indirect quantification of its DNA intercalation. Eur J Pharm Biopharm. 2010;76(3):514–24. doi:10.1016/j.ejpb.2010.07.008.

    Article  CAS  Google Scholar 

  70. Karukstis KK, Thompson EH, Whiles JA, Rosenfeld RJ. Deciphering the fluorescence signature of daunomycin and doxorubicin. Biophys Chem. 1998;73(3):249–63.

    Article  CAS  Google Scholar 

  71. Gewirtz D. A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem Pharmacol. 1999;57(7):727–41. doi:10.1016/S0006-2952(98)00307-4.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Science Foundation Ireland Principle Investigator Award 11/PI/1108.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeineb Farhane.

Ethics declarations

The authors certify that there is no conflict of interest and they have no affiliations with or involvement in any organization or entity with any financial or non-financial interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 896 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farhane, Z., Bonnier, F. & Byrne, H.J. Monitoring doxorubicin cellular uptake and trafficking using in vitro Raman microspectroscopy: short and long time exposure effects on lung cancer cell lines. Anal Bioanal Chem 409, 1333–1346 (2017). https://doi.org/10.1007/s00216-016-0065-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-0065-0

Keywords

Navigation