Skip to main content
Log in

Separation of proteins by cation-exchange sequential injection chromatography using a polymeric monolithic column

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Since sequential injection chromatography (SIC) emerged in 2003, it has been used for separation of small molecules in diverse samples, but separations of high molar mass compounds such as proteins have not yet been described. In the present work a poly(glycidyl methacrylate-co-ethylene dimethacrylate) (GMA-co-EDMA) monolithic column was prepared by free radical polymerization inside a 2.1-mm-i.d. activated fused silica-lined stainless steel tubing and modified with iminodiacetic acid (IDA). The column was prepared from a mixture of 24 % GMA, 16 % EDMA, 20 % cyclohexanol, and 40 % 1-dodecanol (all % as w/w) containing 1 % of azobisisobutyronitrile (AIBN) (in relation to monomers). Polymerization was done at 60 °C for 24 h. The polymer was modified with 1.0 M IDA (in 2 M Na2CO3, pH 10.5) at 80 °C for 16 h. Separation of myoglobin, ribonuclease A, cytochrome C, and lysozyme was achieved at pH 7.0 (20 mM KH2PO4/K2HPO4) using a salt gradient (NaCl). Myoglobin was not retained, and the other proteins were separated by a gradient of NaCl created inside the holding coil (4 m of 0.8-mm-i.d. PTFE tubing) by sequential aspiration of 750 and 700 μL of 0.2 and 0.1 M NaCl, respectively. As the flow was reversed toward the column (5 μL s−1) the interdispersion of these solutions created a reproducible gradient which separated the proteins in 10 min, with the following order of retention: ribonuclease A < cytochrome C < lysozyme. The elution order was consistent with a cation-exchange mechanism as the retention increased with the isoelectric points.

Sequential injection chromatograph for cation-exchange separation of proteins in a iminodiacetatemodified polyglycidyl methacrylate-co-ethylene dimethacrylate, IDA-poly(GMA-co-EDMA), monolithic column, where MP1 = 20 mM KH2PO4/K2HPO4 (pH 7.0), HC = Holding coil, SP = Syringe Pump, RV = Relef Valve and D = UV-Detector

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Huclova J, Satinsky D, Karlicek R. Coupling of monolithic columns with sequential injection technique - a new separation approach in flow methods. Anal Chim Acta. 2003;494(1–2):133–40. doi:10.1016/s0003-2670(03)00902-4.

    Article  CAS  Google Scholar 

  2. Chocholous P, Solich P, Satinsky D. An overview of sequential injection chromatography. Anal Chim Acta. 2007;600(1–2):129–35. doi:10.1016/j.aca.2007.02.018.

    Article  CAS  Google Scholar 

  3. Idris AM. The second five years of sequential injection chromatography: significant developments in the technology and methodologies. Crit Rev Anal Chem. 2014;44(3):220–32. doi:10.1080/10408347.2013.848778.

    Article  CAS  Google Scholar 

  4. Chocholous P, Kosarova L, Satinsky D, Sklenarova H, Solich P. Enhanced capabilities of separation in sequential injection chromatography - fused-core particle column and its comparison with narrow-bore monolithic column. Talanta. 2011;85(2):1129–34. doi:10.1016/j.talanta.2011.05.027.

    Article  CAS  Google Scholar 

  5. Sklenarova H, Chocholous P, Koblova P, Zahalka L, Satinsky D, Matysova L, et al. High-resolution monolithic columns–a new tool for effective and quick separation. Anal Bioanal Chem. 2013;405(7):2255–63. doi:10.1007/s00216-012-6561-y.

    Article  CAS  Google Scholar 

  6. Urio RP, Masini JC. Evaluation of sequential injection chromatography for reversed phase separation of triazine herbicides exploiting monolithic and core-shell columns. Talanta. 2015;131:528–34. doi:10.1016/j.talanta.2014.08.020.

    Article  Google Scholar 

  7. Fernandez M, Gonzalez-San Miguel HM, Estela JM, Cerda V. Contribution of multi-commuted flow analysis combined with monolithic columns to low-pressure, high-performance chromatography. Trac Trends Anal Chem. 2009;28(3):336–46. doi:10.1016/j.trac.2008.11.014.

    Article  Google Scholar 

  8. Horstkotte B, Jarosova P, Chocholous P, Sklenarova H, Solich P. Sequential injection chromatography with post-column reaction/derivatization for the determination of transition metal cations in natural water samples. Talanta. 2015;136:75–83. doi:10.1016/j.talanta.2015.01.001.

    Article  CAS  Google Scholar 

  9. Rigobello-Masini M, Pires Penteado JC, Masini JC. Monolithic columns in plant proteomics and metabolomics. Anal Bioanal Chem. 2013;405(7):2107–22. doi:10.1007/s00216-012-6574-6.

    Article  CAS  Google Scholar 

  10. Mehrez R, Ernst M, Jekel M. Development of a continuous protein and polysaccharide measurement method by sequential injection analysis for application in membrane bioreactor systems. Water Sci Technol. 2007;56(6):163–71. doi:10.2166/wst.2007.645.

    Article  CAS  Google Scholar 

  11. Siangproh W, Teshima N, Sakai T, Katoh S, Chailapakul O. Alternative method for measurement of albumin/creatinine ratio using spectrophotometric sequential injection analysis. Talanta. 2009;79(4):1111–7. doi:10.1016/j.talanta.2008.12.068.

    Article  CAS  Google Scholar 

  12. Pokrzywnicka M, Tymecki L, Koncki R. Low-cost optical detectors and flow systems for protein determination. Talanta. 2012;96:121–6. doi:10.1016/j.talanta.2012.01.061.

    Article  CAS  Google Scholar 

  13. Laiwattanapaisal W, Kunanuvat U, Intharachuti W, Chinvongamorn C, Hannongbua S, Chailapakul O. Simple sequential injection analysis system for rapid determination of microalbuminuria. Talanta. 2009;79(4):1104–10. doi:10.1016/j.talanta.2009.02.020.

    Article  CAS  Google Scholar 

  14. Spence DM, Knoll ED, Ruotolo BT, Bjerregaard J. Development of a sequential injection system in the capillary format for determinations of the IpaC protein. Anal Chim Acta. 2000;409(1–2):3–8. doi:10.1016/s0003-2670(99)00760-6.

    Article  CAS  Google Scholar 

  15. Zacharis CK, Kalaitzantonakis EA, Podgornik A, Theodoridis G. Sequential injection affinity chromatography utilizing an albumin immobilized monolithic column to study drug-protein interactions. J Chromatogr A. 2007;1144(1):126–34. doi:10.1016/j.chroma.2006.12.081.

    Article  CAS  Google Scholar 

  16. Svec F. Quest for organic polymer-based monolithic columns affording enhanced efficiency in high performance liquid chromatography separations of small molecules in isocratic mode. J Chromatogr A. 2012;1228:250–62. doi:10.1016/j.chroma.2011.07.019.

    Article  CAS  Google Scholar 

  17. Cao Q, Xu Y, Liu F, Svec F, Frechet JMJ. Polymer monoliths with exchangeable chemistries: use of gold nanoparticles as intermediate ligands for capillary columns with varying surface functionalities. Anal Chem. 2010;82(17):7416–21. doi:10.1021/ac1015613.

    Article  CAS  Google Scholar 

  18. Švec Fe, Tennikova TB, Deyl Zk. Monolithic materials: preparation, properties, and applications. Journal of chromatography library, vol 67, 1st ed. Amsterdam: Elsevier; 2003.

  19. Svec F. Porous polymer monoliths: amazingly wide variety of techniques enabling their preparation. J Chromatogr A. 2010;1217(6):902–24. doi:10.1016/j.chroma.2009.09.073.

    Article  CAS  Google Scholar 

  20. Arrua RD, Talebi M, Causon TJ, Hilder EF. Review of recent advances in the preparation of organic polymer monoliths for liquid chromatography of large molecules. Anal Chim Acta. 2012;738:1–12. doi:10.1016/j.aca.2012.05.052.

    Article  CAS  Google Scholar 

  21. Luo QZ, Zou HF, Xiao XZ, Guo Z, Kong L, Mao XQ. Chromatographic separation of proteins on metal immobilized iminodiacetic acid-bound molded monolithic rods of macroporous poly(glycidyl methacrylate-co-ethylene dimethacrylate). J Chromatogr A. 2001;926(2):255–64. doi:10.1016/s0021-9673(01)01055-x.

    Article  CAS  Google Scholar 

  22. Ren DY, Penner NA, Slentz BE, Inerowicz HD, Rybalko M, Regnier FE. Contributions of commercial sorbents to the selectivity in immobilized metal affinity chromatography with Cu(II). J Chromatogr A. 2004;1031(1–2):87–92. doi:10.1016/j.chroma.2003.10.041.

    Article  CAS  Google Scholar 

  23. Feng S, Pan CS, Jiang XG, Xu SY, Zhou HJ, Ye ML, et al. Fe3+ immobilized metal affinity chromatography with silica monolithic capillary column for phosphoproteome analysis. Proteomics. 2007;7(3):351–60. doi:10.1002/pmic.200600045.

    Article  CAS  Google Scholar 

  24. Umemura T, Ueki Y, Tsunoda K, Katakai A, Tamada M, Haraguchi H. Preparation and characterization of methacrylate-based semi-micro monoliths for high-throughput bioanalysis. Anal Bioanal Chem. 2006;386(3):566–71. doi:10.1007/s00216-006-0425-2.

    Article  CAS  Google Scholar 

  25. Shu S, Kobayashi H, Okubo M, Sabarudin A, Butsugan M, Umemura T. Chemical anchoring of lauryl methacrylate-based reversed phase monolith to 1/16'' o.d. polyetheretherketone tubing. J Chromatogr A. 2012;1242:59–66. doi:10.1016/j.chroma.2012.04.030.

    Article  CAS  Google Scholar 

  26. Eeltink S, Swart R. 1-mm-i.d. monolithic HPLC columns for high-efficiency protein separations. Am Lab. 2009;41(10):33–34.

    CAS  Google Scholar 

  27. Rigobello-Masini M, Masini JC. Improvements in the separation capabilities of sequential injection chromatography: determination of intracellular dissolved free amino acid profiles in three taxonomic groups of microalgae. Phytochem Anal. 2013;24(3):224–9. doi:10.1002/pca.2402.

    Article  CAS  Google Scholar 

  28. Wang HX, Zhang HY, Lv YQ, Syec F, Tan TW. Polymer monoliths with chelating functionalities for solid phase extraction of metal ions from water. J Chromatogr A. 2014;1343:128–34. doi:10.1016/j.chroma.2014.03.072.

    Article  CAS  Google Scholar 

  29. Coufal P, Cihak M, Suchankova J, Tesarova E, Bosakova Z, Stulik K. Methacrylate monolithic columns of 320 mu m ID for capillary liquid chromatography. J Chromatogr A. 2002;946(1–2):99–106. doi:10.1016/s0021-9673(01)01570-9.

    Article  CAS  Google Scholar 

  30. Rahmi D, Takasaki Y, Zhu YB, Kobayashi H, Konagaya S, Haraguchi H, et al. Preparation of monolithic chelating adsorbent inside a syringe filter tip for solid phase microextraction of trace elements in natural water prior to their determination by ICP-MS. Talanta. 2010;81(4–5):1438–45. doi:10.1016/j.talanta.2010.02.048.

    Article  CAS  Google Scholar 

  31. Rigobello-Masini M, Penteado JCP, Liria CW, Miranda MTM, Masini JC. Implementing stepwise solvent elution in sequential injection chromatography for fluorimetric determination of intracellular free amino acids in the microalgae Tetraselmis gracilis. Anal Chim Acta. 2008;628(2):123–32. doi:10.1016/j.aca.2008.08.030.

    Article  CAS  Google Scholar 

  32. Koblova P, Sklenarova H, Chocholous P, Polasek M, Solich P. Simple automated generation of gradient elution conditions in sequential injection chromatography using monolithic column. Talanta. 2011;84(5):1273–7. doi:10.1016/j.talanta.2011.01.029.

    Article  CAS  Google Scholar 

  33. da Silva MAO, Arruda MAZ. Mechanization of the Bradford reaction for the spectrophotometric determination of total proteins. Anal Biochem. 2006;351(1):155–7. doi:10.1016/j.ab.2005.12.033.

    Article  Google Scholar 

  34. Masini JC, Baxter PJ, Detwiler K, Christian GD. Online spectrophotometric determination of phosphate in bioprocesses by sequential injection. Analyst. 1995;120(5):1583–7. doi:10.1039/an9952001583.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by grants 2013/18507-4 from the São Paulo Research Foundation (FAPESP) and 306075/2013-0 from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Cesar Masini.

Ethics declarations

Conflict of interest

The author states that he has no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masini, J.C. Separation of proteins by cation-exchange sequential injection chromatography using a polymeric monolithic column. Anal Bioanal Chem 408, 1445–1452 (2016). https://doi.org/10.1007/s00216-015-9242-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-9242-9

Keywords

Navigation