Skip to main content
Log in

An in-depth evaluation of accuracy and precision in Hg isotopic analysis via pneumatic nebulization and cold vapor generation multi-collector ICP-mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Mercury (Hg) isotopic analysis via multi-collector inductively coupled plasma (ICP)-mass spectrometry (MC-ICP-MS) can provide relevant biogeochemical information by revealing sources, pathways, and sinks of this highly toxic metal. In this work, the capabilities and limitations of two different sample introduction systems, based on pneumatic nebulization (PN) and cold vapor generation (CVG), respectively, were evaluated in the context of Hg isotopic analysis via MC-ICP-MS. The effect of (i) instrument settings and acquisition parameters, (ii) concentration of analyte element (Hg), and internal standard (Tl)—used for mass discrimination correction purposes—and (iii) different mass bias correction approaches on the accuracy and precision of Hg isotope ratio results was evaluated. The extent and stability of mass bias were assessed in a long-term study (18 months, n = 250), demonstrating a precision ≤0.006 % relative standard deviation (RSD). CVG-MC-ICP-MS showed an approximately 20-fold enhancement in Hg signal intensity compared with PN-MC-ICP-MS. For CVG-MC-ICP-MS, the mass bias induced by instrumental mass discrimination was accurately corrected for by using either external correction in a sample-standard bracketing approach (SSB) or double correction, consisting of the use of Tl as internal standard in a revised version of the Russell law (Baxter approach), followed by SSB. Concomitant matrix elements did not affect CVG-ICP-MS results. Neither with PN, nor with CVG, any evidence for mass-independent discrimination effects in the instrument was observed within the experimental precision obtained. CVG-MC-ICP-MS was finally used for Hg isotopic analysis of reference materials (RMs) of relevant environmental origin. The isotopic composition of Hg in RMs of marine biological origin testified of mass-independent fractionation that affected the odd-numbered Hg isotopes. While older RMs were used for validation purposes, novel Hg isotopic data are provided for the latest generations of some biological RMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fitzgerald WF, Lamborg CH (2003). Geochemistry of mercury in the environment. In: Treatise on geochemistry, vol. 9. Elservier, New York, pp. 107–148

  2. Ridley WI, Stetson SJ (2006) Appl Geochem 21:1889–1899

    Article  CAS  Google Scholar 

  3. National Research Council (1978) An assessment of mercury in the environment. National Academy of Sciences, Washington, DC

    Google Scholar 

  4. Mergler D, Anderson HA, Chan LHM, Mahaffey KR, Murray M, Sakamoto M, Stern AH (2007) Ambio 36:3–11

    Article  CAS  Google Scholar 

  5. Baya PA, Gosselin M, Lehnherr I, St.Louis VL, Hintelmann H (2015) Environ Sci Technol 49:223–232

    Article  CAS  Google Scholar 

  6. Fitzgerald WF, Engström DR, Mason RP, Nater EA (1998) Environ Sci Technol 32:1–7

    Article  CAS  Google Scholar 

  7. Blum JD (2011) Applications of stable mercury isotopes to biogeochemistry. In: Bskaran M (ed) Handbook of environmental isotope geochemistry, advances in isotope geochemistry. Springer, Berlin

    Google Scholar 

  8. Hintelmann H (2012) Use of stable isotopes in mercury research. In: Bank MS (ed) Mercury in the environment. Univ Calif Press, Berkeley

    Google Scholar 

  9. Blum JD, Sherman LS, Johnson MW (2014) Annu Rev Earth Planet Sci 42:249–269

    Article  CAS  Google Scholar 

  10. Yin R, Feng X, Li X, Yu B, Du B (2014) Trends Environ Anal Chem 2:1–10

    Article  CAS  Google Scholar 

  11. Vanhaecke F, Balcaen L, Malinovsky D (2009) J Anal At Spectrom 24:863–886

    Article  CAS  Google Scholar 

  12. Yin R, Feng X, Shi W (2010) Appl Geochem 25:1467–1477

    Article  CAS  Google Scholar 

  13. Young ED, Galy A, Nagahara H (2002) Geochim Cosmochim Acta 66:1095–1104

    Article  CAS  Google Scholar 

  14. Biegeleisen J (1996) J Am Chem Soc 118:3676–3680

    Article  Google Scholar 

  15. Buchachenko AL (2001) J Phys Chem A 105:9995–10011

    Article  CAS  Google Scholar 

  16. Chen J, Hintelmann H, Feng X, Dimock B (2012) Geochim Cosmochim Acta 90:33–46

    Article  CAS  Google Scholar 

  17. Wang Z, Chen J, Feng X, Hintelmann H, Yuan S, Cai H, Huang Q, Wang S, Wang F (2015) Compt Rendus Geosci. doi:10.1016/j.crte.2015.1002.1006

    Google Scholar 

  18. Theimens MH (1999) Science 283:341–345

    Article  Google Scholar 

  19. Farqijar J, Bao H, Tjoe ME (2000) Science 289:756–759

    Article  Google Scholar 

  20. Gantner N, Hintelmann H, Zheng W, Muir DC (2009) Environ Sci Technol 43:9148–9154

    Article  CAS  Google Scholar 

  21. Laffont L, Sonke JE, Maurice L, Hintelmann H, Pouilly M, Bacarreza YS, Perez T, Behra P (2009) Environ Sci Technol 43:8985–8990

    Article  CAS  Google Scholar 

  22. Zambardi T, Sonke JE, Toutain JP, Sortino F, Shinohara H (2009) Earh Planet Sci Lett 277:236–243

    Article  CAS  Google Scholar 

  23. Perrot V, Epov VN, Pastukhov MV, Grebenshchikova VI, Zouiten C, Sonke JE, Husted S, Donard OFX, Amouroux D (2010) Environ Sci Technol 44:8030–8037

    Article  CAS  Google Scholar 

  24. Masbou J, Point D, Sonke J (2013) J Anal At Spectrom 28:1620–1628

    Article  CAS  Google Scholar 

  25. Albarède F, Telouk P, Blichert-Toft J, Boyet M, Agranier A, Nelson B (2004) Geochim Cosmochim Acta 68:2725–2744

    Article  Google Scholar 

  26. Meija J, Yang L, Mester Z, Sturgeon RE (2012) Correction of instrumental mass discrimination for isotope ratio determination with multi-collector inductively coupled plasma mass spectrometry. In: Vanhaecke F, Degryse P (eds) Isotopic analysis fundamentals and applications using ICP-MS. Wiley-VCH, Germany

    Google Scholar 

  27. Yang L (2009) Mass Spectrom Rev 28:990–1011

    Article  CAS  Google Scholar 

  28. Kivel N, Potthast H-D, Günther-Leopold I, Vanhaecke F, Günther D (2014) Spectrochim Acta B 93:34–40

    Article  CAS  Google Scholar 

  29. Barling J, Weis D (2008) J Anal At Spectrom 23:1017–1025

    Article  CAS  Google Scholar 

  30. Barling J, Weis D (2012) J Anal At Spectrom 27:653–662

    Article  CAS  Google Scholar 

  31. Yang L, Sturgeon RE (2003) J Anal At Spectrom 18:1452–1457

    Article  CAS  Google Scholar 

  32. Taylor PDP, De Bièvre P, Walder AJ, Entwistle A (1995) J Anal At Spectrom 10:395–398

  33. Devulder V, Lobo L, Van Hoecke K, Degryse P, Vanhaecke F (2013) Spectrochim Acta B 89:20–29

  34. Vanhaecke F, Vanhoe H, Dams R (1992) Talanta 39:737–742

    Article  CAS  Google Scholar 

  35. Albarède F, Albalat E, Télouk P (2015) J Anal At Spectrom 30:1736–1742

    Article  Google Scholar 

  36. Russell WA, Papanastassiou DA, Tombrello TA (1978) Geochim Cosmochim Acta 42:1075–1090

    Article  CAS  Google Scholar 

  37. Hirata T (1996) Analyst 121:1407–1411

    Article  CAS  Google Scholar 

  38. White WM, Albarède F, Télouk P (2000) Chem Geol 167:257–270

    Article  CAS  Google Scholar 

  39. Woodhead J (2002) J Anal At Spectrom 17:1381–1385

    Article  CAS  Google Scholar 

  40. Baxter DC, Rodushkin I, Engström E, Malinovsky D (2006) J Anal At Spectrom 21:427–430

    Article  CAS  Google Scholar 

  41. Wombacher F, Rehkämper M (2003) J Anal At Spectrom 18:1371–1375

    Article  CAS  Google Scholar 

  42. Mead C, Johnson TM (2010) Anal Bioanal Chem 397:1529–1538

    Article  CAS  Google Scholar 

  43. Evans RD, Hintelmann H, Dillon PJ (2001) J Anal At Spectrom 16:1064–1069

    Article  CAS  Google Scholar 

  44. Sonke JE, Zambardi T, Toutain J-P (2008) J Anal At Spectrom 23:569–573

    Article  CAS  Google Scholar 

  45. Leopold K, Foulkes M, Worsfold PJ (2009) TrAC Trends Anal Chem 28:426–435

    Article  CAS  Google Scholar 

  46. Hintelmann H, Lu S (2003) Analyst 128:635–639

    Article  CAS  Google Scholar 

  47. Foucher D, Hintelmann H (2006) Anal Bioanal Chem 384:1470–1478

    Article  CAS  Google Scholar 

  48. Vanhaecke F, Van Holderbeke M, Moens L, Dams R (1996) J Anal At Spectrom 11:543–548

  49. Kritee K, Blum JD, Johnson MW, Bergquist BA, Barkay T (2007) Environ Sci Technol 41:1889–1895

    Article  CAS  Google Scholar 

  50. Foucher D, Ogrinc N, Hintelmann H (2009) Environ Sci Technol 43:33–39

    Article  CAS  Google Scholar 

  51. Sonke JE, Schäfer J, Chmeleff J, Audry S, Blanc G, Dupré B (2010) Chem Geol 279:90–100

    Article  CAS  Google Scholar 

  52. Aramendía M, Resano M, Vanhaecke F (2010) J Anal At Spectrom 25:390–404

    Article  Google Scholar 

  53. Epov VN, Rodriguez-Gonzalez P, Sonke JE, Tessier E, Amouroux D, Bourgoin LM, Donard OFX (2008) Anal Chem 80:3530–3538

    Article  CAS  Google Scholar 

  54. Yang L, Mester Z, Zhou L, Gao S, Sturgeon RE, Meija J (2011) Anal Chem 83:8999–9004

    Article  CAS  Google Scholar 

  55. Blum JB, Bergquist BA (2007) Anal Bioanal Chem 388:353–359

    Article  CAS  Google Scholar 

  56. Meija J, Yang L, Sturgeon RE, Mester Z (2010) J Anal At Spectrom 25:384–389

    Article  CAS  Google Scholar 

  57. Evans EH, Giglio JJ (1993) J Anal At Spectrom 8:1–18

    Article  CAS  Google Scholar 

  58. Agatemor C, Beauchemin D (2011) Anal Chim Acta 706:66–83

    Article  CAS  Google Scholar 

  59. Rehkämper M, Mezger K (2000) J Anal At Mass Spectrom 15:1451–1460

    Article  Google Scholar 

  60. Fontaine GH, Hattendorf B, Bourdon B, Günther D (2009) J Anal At Mass Spectrom 24:637–648

    Article  CAS  Google Scholar 

  61. Bergquist BA, Blum JD (2007) Science 318:417–420

    Article  CAS  Google Scholar 

  62. Malinovsky D, Sturgeon RE, Yang L (2008) Anal Chem 80:2548–2555

    Article  CAS  Google Scholar 

  63. Kwon SY, Blum JD, Chen CY, Meattey DE, Mason RP (2014) Environ Sci Technol 48:10089–10097

    Article  CAS  Google Scholar 

  64. Perrot V, Pastukhov MV, Epov VN, Husted S, Donard OFX, Amouroux D (2012) Environ Sci Technol 46:5902–5911

    Article  CAS  Google Scholar 

  65. Sherman LS, Blum JB (2013) Sci Total Environ 448:163–175

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the European Metrology Research Programme (EMRP) for the organizational research excellence grant (REG) provided in the context of the SIB09-Elements project. The EMRP is jointly funded by the EMRP-participating countries within the Euramet and the EU. The authors sincerely thank (i) Prof. Dr. Olivier Donard and Dr. Sylvain Bérail from the Université de Pau et des Pays de l’Adour, Pau (France) for providing them with an aliquot of UM-Almaden digest and (ii) Dr. Patricia Grinberg and Dr. Ralph Sturgeon from the Canadian National Research Centre (NRC) for providing them with reference materials that are no longer commercially available.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Vanhaecke.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Published in the topical collection Applications of Isotopes in Analytical Ecogeochemistry with guest editors Thomas Prohaska, Andreas Zitek, and Johanna Irrgeher.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 478 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rua-Ibarz, A., Bolea-Fernandez, E. & Vanhaecke, F. An in-depth evaluation of accuracy and precision in Hg isotopic analysis via pneumatic nebulization and cold vapor generation multi-collector ICP-mass spectrometry. Anal Bioanal Chem 408, 417–429 (2016). https://doi.org/10.1007/s00216-015-9131-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-9131-2

Keywords

Navigation