Skip to main content

Advertisement

Log in

Absolute quantification of γH2AX using liquid chromatography–triple quadrupole tandem mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Ser139-phosphorylated histone H2AX (γH2AX) is a useful biomarker of DNA double strand breaks. γH2AX has been conventionally detected by immunology-based methods using anti-γH2AX antibody, but quantitative analysis is difficult to perform with such methods. Here, we describe an absolute quantification method using liquid chromatography–triple quadrupole tandem mass spectrometry that is applicable to peptides derived from γH2AX (ATQA(pS)QEY) and unphosphorylated H2AX (ATQASQEY). Our method was successfully applied to histones extracted from human cervix adenocarcinoma HeLa S3 cells. The estimated number of molecules of γH2AX (ATQA(pS)QEY) per vehicle-treated HeLa S3 cell was 9.4 × 104 and increased to 6.2 × 105 molecules/cell after exposure to the DNA-damaging agent camptothecin (10 μM) for 1 h. The estimated total amount of H2AX (ATQA(pS)QEY + ATQASQEY) was 3.3–3.6 × 106 molecules/cell. Due to its broad adaptability and throughput performance, we believe that our method is a powerful tool for mechanistic studies of the DNA-damage response as well as for genotoxicity testing, cancer drug screening, clinical studies, and other fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM (1998) DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273(10):5858–5868

    Article  CAS  Google Scholar 

  2. Ward IM, Chen J (2001) Histone H2AX is phosphorylated in an ATR-dependent manner in response to replicational stress. J Biol Chem 276(51):47759–47762. doi:10.1074/jbc.C100569200

    CAS  Google Scholar 

  3. Rogakou EP, Boon C, Redon C, Bonner WM (1999) Megabase chromatin domains involved in DNA double-strand breaks in vivo. J Cell Biol 146(5):905–916

    Article  CAS  Google Scholar 

  4. Podhorecka M, Skladanowski A, Bozko P (2010) H2AX phosphorylation: its role in DNA damage response and cancer therapy. J Nucleic Acids. doi:10.4061/2010/920161

    Google Scholar 

  5. Rothkamm K, Lobrich M (2003) Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray doses. Proc Natl Acad Sci U S A 100(9):5057–5062. doi:10.1073/pnas.0830918100

    Article  CAS  Google Scholar 

  6. Matsuda S, Matsuda R, Matsuda Y, Yanagisawa S-Y, Ikura M, Ikura T, Matsuda T (2014) An easy-to-use genotoxicity assay using EGFP-MDC1-expressing human cells. Genes Environ 36(1):17–28

    Article  CAS  Google Scholar 

  7. Watters GP, Smart DJ, Harvey JS, Austin CA (2009) H2AX phosphorylation as a genotoxicity endpoint. Mutat Res 679(1–2):50–58. doi:10.1016/j.mrgentox.2009.07.007

    Article  CAS  Google Scholar 

  8. Sanchez-Flores M, Pasaro E, Bonassi S, Laffon B, Valdiglesias V (2015) gammaH2AX assay as DNA damage biomarker for human population studies: defining experimental conditions. Toxicol Sci Off J Soc Toxicol. doi:10.1093/toxsci/kfv011

    Google Scholar 

  9. Ando M, Yoshikawa K, Iwase Y, Ishiura S (2014) Usefulness of monitoring gamma-H2AX and cell cycle arrest in HepG2 cells for estimating genotoxicity using a high-content analysis system. J Biomol Screen 19(9):1246–1254. doi:10.1177/1087057114541147

    Article  CAS  Google Scholar 

  10. Khoury L, Zalko D, Audebert M (2013) Validation of high-throughput genotoxicity assay screening using gammaH2AX in-cell western assay on HepG2 cells. Environ Mol Mutagen 54(9):737–746. doi:10.1002/em.21817

    Article  CAS  Google Scholar 

  11. Tsamou M, Jennen DG, Claessen SM, Magkoufopoulou C, Kleinjans JC, van Delft JH (2012) Performance of in vitro gammaH2AX assay in HepG2 cells to predict in vivo genotoxicity. Mutagenesis 27(6):645–652. doi:10.1093/mutage/ges030

    Article  CAS  Google Scholar 

  12. Smart DJ, Ahmedi KP, Harvey JS, Lynch AM (2011) Genotoxicity screening via the gammaH2AX by flow assay. Mutat Res 715(1–2):25–31. doi:10.1016/j.mrfmmm.2011.07.001

    Article  CAS  Google Scholar 

  13. Audebert M, Riu A, Jacques C, Hillenweck A, Jamin EL, Zalko D, Cravedi JP (2010) Use of the gammaH2AX assay for assessing the genotoxicity of polycyclic aromatic hydrocarbons in human cell lines. Toxicol Lett 199(2):182–192. doi:10.1016/j.toxlet.2010.08.022

    Article  CAS  Google Scholar 

  14. Audebert M, Zeman F, Beaudoin R, Pery A, Cravedi JP (2012) Comparative potency approach based on H2AX assay for estimating the genotoxicity of polycyclic aromatic hydrocarbons. Toxicol Appl Pharmacol 260(1):58–64. doi:10.1016/j.taap.2012.01.022

    Article  CAS  Google Scholar 

  15. Albino AP, Jorgensen ED, Rainey P, Gillman G, Clark TJ, Gietl D, Zhao H, Traganos F, Darzynkiewicz Z (2009) gammaH2AX: a potential DNA damage response biomarker for assessing toxicological risk of tobacco products. Mutat Res 678(1):43–52. doi:10.1016/j.mrgentox.2009.06.009

    Article  CAS  Google Scholar 

  16. Kao J, Milano MT, Javaheri A, Garofalo MC, Chmura SJ, Weichselbaum RR, Kron SJ (2006) gamma-H2AX as a therapeutic target for improving the efficacy of radiation therapy. Curr Cancer Drug Targets 6(3):197–205

    Article  CAS  Google Scholar 

  17. Taneja N, Davis M, Choy JS, Beckett MA, Singh R, Kron SJ, Weichselbaum RR (2004) Histone H2AX phosphorylation as a predictor of radiosensitivity and target for radiotherapy. J Biol Chem 279(3):2273–2280. doi:10.1074/jbc.M310030200

    Article  CAS  Google Scholar 

  18. Redon CE, Nakamura AJ, Zhang YW, Ji JJ, Bonner WM, Kinders RJ, Parchment RE, Doroshow JH, Pommier Y (2010) Histone gammaH2AX and poly(ADP-ribose) as clinical pharmacodynamic biomarkers. Clin Cancer Res Off J Am Assoc Cancer Res 16(18):4532–4542. doi:10.1158/1078-0432.CCR-10-0523

    Article  CAS  Google Scholar 

  19. Wu J, Clingen PH, Spanswick VJ, Mellinas-Gomez M, Meyer T, Puzanov I, Jodrell D, Hochhauser D, Hartley JA (2013) gamma-H2AX foci formation as a pharmacodynamic marker of DNA damage produced by DNA cross-linking agents: results from 2 phase I clinical trials of SJG-136 (SG2000). Clin Cancer Res Off J Am Assoc Cancer Res 19(3):721–730. doi:10.1158/1078-0432.CCR-12-2529

    Article  CAS  Google Scholar 

  20. Sedelnikova OA, Bonner WM (2006) GammaH2AX in cancer cells: a potential biomarker for cancer diagnostics, prediction and recurrence. Cell Cycle 5(24):2909–2913

    Article  CAS  Google Scholar 

  21. Gorgoulis VG, Vassiliou LV, Karakaidos P, Zacharatos P, Kotsinas A, Liloglou T, Venere M, Ditullio RA Jr, Kastrinakis NG, Levy B, Kletsas D, Yoneta A, Herlyn M, Kittas C, Halazonetis TD (2005) Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 434(7035):907–913. doi:10.1038/nature03485

    Article  CAS  Google Scholar 

  22. Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics MCP 1(5):376–386

    Article  CAS  Google Scholar 

  23. Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17(10):994–999. doi:10.1038/13690

    Article  CAS  Google Scholar 

  24. Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, Bartlet-Jones M, He F, Jacobson A, Pappin DJ (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics MCP 3(12):1154–1169. doi:10.1074/mcp.M400129-MCP200

    Article  CAS  Google Scholar 

  25. Gerber SA, Rush J, Stemman O, Kirschner MW, Gygi SP (2003) Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc Natl Acad Sci U S A 100(12):6940–6945. doi:10.1073/pnas.0832254100

    Article  CAS  Google Scholar 

  26. Desiderio DM, Kai M (1983) Preparation of stable isotope-incorporated peptide internal standards for field desorption mass spectrometry quantification of peptides in biologic tissue. Biomed Mass Spectrom 10(8):471–479. doi:10.1002/bms.1200100806

    Article  CAS  Google Scholar 

  27. Kirkpatrick DS, Gerber SA, Gygi SP (2005) The absolute quantification strategy: a general procedure for the quantification of proteins and post-translational modifications. Methods 35(3):265–273. doi:10.1016/j.ymeth.2004.08.018

    Article  CAS  Google Scholar 

  28. Shechter D, Dormann HL, Allis CD, Hake SB (2007) Extraction, purification and analysis of histones. Nat Protoc 2(6):1445–1457. doi:10.1038/nprot.2007.202

    Article  CAS  Google Scholar 

  29. Kim SC, Chen Y, Mirza S, Xu Y, Lee J, Liu P, Zhao Y (2006) A clean, more efficient method for in-solution digestion of protein mixtures without detergent or urea. J Proteome Res 5(12):3446–3452. doi:10.1021/pr0603396

    Article  CAS  Google Scholar 

  30. Rappsilber J, Ishihama Y, Mann M (2003) Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Anal Chem 75(3):663–670

    Article  CAS  Google Scholar 

  31. Shuford CM, Sederoff RR, Chiang VL, Muddiman DC (2012) Peptide production and decay rates affect the quantitative accuracy of protein cleavage isotope dilution mass spectrometry (PC-IDMS). Mol Cell Proteomics MCP 11(9):814–823. doi:10.1074/mcp.O112.017145

    Article  CAS  Google Scholar 

  32. Burma S, Chen BP, Murphy M, Kurimasa A, Chen DJ (2001) ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J Biol Chem 276(45):42462–42467. doi:10.1074/jbc.C100466200

    Article  CAS  Google Scholar 

  33. Stiff T, O’Driscoll M, Rief N, Iwabuchi K, Lobrich M, Jeggo PA (2004) ATM and DNA-PK function redundantly to phosphorylate H2AX after exposure to ionizing radiation. Cancer Res 64(7):2390–2396

    Article  CAS  Google Scholar 

  34. Cook PJ, Ju BG, Telese F, Wang X, Glass CK, Rosenfeld MG (2009) Tyrosine dephosphorylation of H2AX modulates apoptosis and survival decisions. Nature 458(7238):591–596. doi:10.1038/nature07849

    Article  CAS  Google Scholar 

  35. Xiao A, Li H, Shechter D, Ahn SH, Fabrizio LA, Erdjument-Bromage H, Ishibe-Murakami S, Wang B, Tempst P, Hofmann K, Patel DJ, Elledge SJ, Allis CD (2009) WSTF regulates the H2A.X DNA damage response via a novel tyrosine kinase activity. Nature 457(7225):57–62. doi:10.1038/nature07668

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by KAKENHI (23221006) from the Japan Society for the Promotion of Science and Grants-in-Aid for Scientific Research on Innovative Areas.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomonari Matsuda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsuda, S., Ikura, T. & Matsuda, T. Absolute quantification of γH2AX using liquid chromatography–triple quadrupole tandem mass spectrometry. Anal Bioanal Chem 407, 5521–5527 (2015). https://doi.org/10.1007/s00216-015-8725-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-8725-z

Keywords

Navigation