Skip to main content
Log in

Simultaneous determination of chlorantraniliprole and cyantraniliprole in fruits, vegetables and cereals using ultra-high-performance liquid chromatography–tandem mass spectrometry with the isotope-labelled internal standard method

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A reliable and sensitive isotope-labelled internal standard method for simultaneous determination of chlorantraniliprole and cyantraniliprole in fruits (apple and grape), vegetables (cucumber and tomato) and cereals (rice and wheat) using ultra-high-performance liquid chromatography–tandem mass spectrometry was developed. Isotope-labelled internal standards were effective in compensating for the loss in the pretreatment and overcoming the matrix effect. The analytes were extracted with acetonitrile and cleaned up with different kinds of sorbents. The determination of the target compounds was achieved in less than 4 min using a T3 column combined with an electrospray ionization source in positive mode. The overall average relative recoveries in all matrices at three spiking levels (10, 20 and 50 μg kg-1) ranged from 95.5 to 106.2 %, with all relative standard deviations being less than 14.4 % for all analytes. The limits of detection did not exceed 0.085 μg kg-1 and the limits of quantification were below 0.28 μg kg-1 in all matrices. The method was demonstrated to be convenient and accurate for the routine monitoring of chlorantraniliprole and cyantraniliprole in fruits, vegetables and cereals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lahm GP, Selby TP, Freudenberger JH, Stevenson TM, Myers BJ, Seburyamo G, Smith BK, Flexner L, Clark CE, Cordova D (2005) Insecticidal anthranilic diamides: a new class of potent ryanodine receptor activators. Bioorg Med Chem Lett 15(22):4898–4906

    Article  CAS  Google Scholar 

  2. Lahm GP, Cordova D, Barry JD (2009) New and selective ryanodine receptor activators for insect control. Bioorg Med Chem 17(12):4127–4133

    Article  CAS  Google Scholar 

  3. Dong F, Xu J, Liu X, Li J, Li Y, Kong Z, Shan W, Zheng Z, Zheng Y (2011) Determination of chlorantraniliprole residues in corn and soil by UPLC–ESI–MS/MS and its application to a pharmacokinetic study. Chromatographia 74(5-6):399–406

    Article  CAS  Google Scholar 

  4. Caboni P, Sarais G, Angioni A, Vargiu S, Pagnozzi D, Cabras P, Casida JE (2008) Liquid chromatography− tandem mass spectrometric ion-switching determination of chlorantraniliprole and flubendiamide in fruits and vegetables. J Agric Food Chem 56(17):7696–7699

    Article  CAS  Google Scholar 

  5. Zhang C, Hu X, Zhao H, Wu M, He H, Zhang C, Tang T, Ping L, Li Z (2013) Residues of cyantraniliprole and its metabolite J9Z38 in rice field ecosystem. Chemosphere 93(1):190–195

    Article  CAS  Google Scholar 

  6. Zhang J-M, Chai W-G, Wu Y-L (2012) Residues of chlorantraniliprole in rice field ecosystem. Chemosphere 87(2):132–136

    Article  CAS  Google Scholar 

  7. Gangl ET, Annan M, Spooner N, Vouros P (2001) Reduction of signal suppression effects in ESI-MS using a nanosplitting device. Anal Chem 73(23):5635–5644

    Article  CAS  Google Scholar 

  8. Sancho JV, Pozo OJ, López FJ, Hernández F (2002) Different quantitation approaches for xenobiotics in human urine samples by liquid chromatography/electrospray tandem mass spectrometry. Rapid Commun Mass Spectrom 16(7):639–645

    Article  CAS  Google Scholar 

  9. Kang J, Hick LA, Price WE (2007) A fragmentation study of isoflavones in negative electrospray ionization by MSn ion trap mass spectrometry and triple quadrupole mass spectrometry. Rapid Commun Mass Spectrom 21(6):857–868

    Article  CAS  Google Scholar 

  10. Pozo ÓJ, Sancho JV, Ibáñez M, Hernández F, Niessen W (2006) Confirmation of organic micropollutants detected in environmental samples by liquid chromatography tandem mass spectrometry: Achievements and pitfalls. TrAC, Trends Anal Chem 25(10):1030–1042

  11. Sancho J, Ibanez M, Grimalt S, Pozo O, Hernandez F (2005) Residue determination of cyromazine and its metabolite melamine in chard samples by ion-pair liquid chromatography coupled to electrospray tandem mass spectrometry. Anal Chim Acta 530(2):237–243

    Article  CAS  Google Scholar 

  12. Taylor MJ, Hunter K, Hunter KB, Lindsay D, Le Bouhellec S (2002) Multi-residue method for rapid screening and confirmation of pesticides in crude extracts of fruits and vegetables using isocratic liquid chromatography with electrospray tandem mass spectrometry. J Chromatogr A 982(2):225–236

    Article  CAS  Google Scholar 

  13. Liu X, Xu J, Dong F, Li Y, Song W, Zheng Y (2011) Residue analysis of four diacylhydrazine insecticides in fruits and vegetables by Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) method using ultra-performance liquid chromatography coupled to tandem mass spectrometry. Anal Bioanal Chem 401(3):1051–1058

    Article  CAS  Google Scholar 

  14. Li Y, Dong F, Liu X, Xu J, Chen X, Han Y, Liang X, Zheng Y (2013) Development of a multi-residue enantiomeric analysis method for 9 pesticides in soil and water by chiral liquid chromatography/tandem mass spectrometry. J Hazard Mater 250:9–18

    Article  Google Scholar 

  15. Tseng S-H, Liu C-C, Lin Y-J, CHen H-C SS-C, Chou H-K, Chou S-S, Shih DY-C (2009) Analysis of 81 pesticides and metabolite residues in fruits and vegetables by diatomaceous earth column extraction and LC/MS/MS determination. J Food Drug Anal 17(5):319–332

    CAS  Google Scholar 

  16. Niessen W, Manini P, Andreoli R (2006) Matrix effects in quantitative pesticide analysis using liquid chromatography–mass spectrometry. Mass Spectrom Rev 25(6):881–899

    Article  CAS  Google Scholar 

  17. Van De Steene JC, Lambert WE (2008) Comparison of matrix effects in HPLC-MS/MS and UPLC-MS/MS analysis of nine basic pharmaceuticals in surface waters. J Am Soc Mass Spectrom 19(5):713–718

    Article  Google Scholar 

  18. Ferrer C, Lozano A, Agüera A, Girón AJ, Fernández-Alba A (2011) Overcoming matrix effects using the dilution approach in multiresidue methods for fruits and vegetables. J Chromatogr A 1218(42):7634–7639

    Article  CAS  Google Scholar 

  19. Wu J, Qian X, Yang Z, Zhang L (2010) Study on the matrix effect in the determination of selected pharmaceutical residues in seawater by solid-phase extraction and ultra-high-performance liquid chromatography–electrospray ionization low-energy collision-induced dissociation tandem mass spectrometry. J Chromatogr A 1217(9):1471–1475

    Article  CAS  Google Scholar 

  20. Zhang S, You J, Ning S, Song C, Suo Y-R (2013) Analysis of estrogenic compounds in environmental and biological samples by liquid chromatography–tandem mass spectrometry with stable isotope-coded ionization-enhancing reagent. J Chromatogr A 1280:84–91

    Article  CAS  Google Scholar 

  21. Guo K, Ji C, Li L (2007) Stable-isotope dimethylation labeling combined with LC-ESI MS for quantification of amine-containing metabolites in biological samples. Anal Chem 79(22):8631–8638

    Article  CAS  Google Scholar 

  22. Freitas LG, Götz CW, Ruff M, Singer HP, Müller SR (2004) Quantification of the new triketone herbicides, sulcotrione and mesotrione, and other important herbicides and metabolites, at the ng/l level in surface waters using liquid chromatography–tandem mass spectrometry. J Chromatogr A 1028(2):277–286

    Article  CAS  Google Scholar 

  23. Marín JM, Gracia-Lor E, Sancho JV, López FJ, Hernández F (2009) Application of ultra-high-pressure liquid chromatography–tandem mass spectrometry to the determination of multi-class pesticides in environmental and wastewater samples: study of matrix effects. J Chromatogr A 1216(9):1410–1420

    Article  Google Scholar 

  24. Li Y, Dong F, Liu X, Xu J, Chen X, Han Y, Cheng Y, Jian Q, Zheng Y (2013) Enantioselective separation and transformation of metalaxyl and its major metabolite metalaxyl acid in tomato and cucumber. Food Chem 141(1):10–17

    Article  CAS  Google Scholar 

  25. Li M, Liu X, Dong F, Xu J, Kong Z, Li Y, Zheng Y (2013) Simultaneous determination of cyflumetofen and its main metabolite residues in samples of plant and animal origin using multi-walled carbon nanotubes in dispersive solid-phase extraction and ultrahigh performance liquid chromatography–tandem mass spectrometry. J Chromatogr A 1300:95–103

    Article  CAS  Google Scholar 

  26. Dong F, Chen X, Liu X, Xu J, Li Y, Shan W, Zheng Y (2012) Simultaneous determination of five pyrazole fungicides in cereals, vegetables and fruits using liquid chromatography/tandem mass spectrometry. J Chromatogr A 1262:98–106

    Article  CAS  Google Scholar 

  27. Matuszewski B, Constanzer M, Chavez-Eng C (2003) Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS. Anal Chem 75(13):3019–3030

    Article  CAS  Google Scholar 

  28. Schwarz T, Snow TA, Santee CJ, Mulligan CC, Class T, Wadsley MP, Nanita SC (2010) QuEChERS multiresidue method validation and mass spectrometric assessment for the novel anthranilic diamide insecticides chlorantraniliprole and cyantraniliprole. J Agric Food Chem 59(3):814–821

    Article  Google Scholar 

  29. Ho C, Lee W-O, Wong Y-T (2012) Determination of N-methyl-1, 3-propanediamine in bovine muscle by liquid chromatography with triple quadrupole and ion trap tandem mass spectrometry detection. J Chromatogr A 1235:103–114

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (31371970).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongquan Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, X., Dong, F., Xu, J. et al. Simultaneous determination of chlorantraniliprole and cyantraniliprole in fruits, vegetables and cereals using ultra-high-performance liquid chromatography–tandem mass spectrometry with the isotope-labelled internal standard method. Anal Bioanal Chem 407, 4111–4120 (2015). https://doi.org/10.1007/s00216-015-8603-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-8603-8

Keywords

Navigation