Skip to main content
Log in

Ripening-dependent metabolic changes in the volatiles of pineapple (Ananas comosus (L.) Merr.) fruit: I. Characterization of pineapple aroma compounds by comprehensive two-dimensional gas chromatography-mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Qualitative ripening-dependent changes of pineapple volatiles were studied via headspace solid-phase microextraction and analyzed by comprehensive two-dimensional gas chromatography quadrupole mass spectrometry (HS-SPME-GC×GC-qMS). Early green-ripe stage, post-harvest ripened, and green-ripe fruits at the end of their commercial shelf-life were compared to air-freighted pineapples harvested at full maturity. In total, more than 290 volatiles could be identified by mass spectrometry and their linear retention indices. The majority of compounds comprise esters (methyl and ethyl esters of saturated and unsaturated fatty acids, acetates), terpenes, alcohols, aldehydes, 2-ketones, free fatty acids, and miscellaneous γ- and δ-lactones. The structured separation space obtained by GC×GC allowed revealing various homologous series of compound classes as well as clustering of sesquiterpenes. Post-harvest ripening increased the diversity of the volatile profile compared to both early green-ripe maturity stages and on-plant ripened fruits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. FAO (2013) FAO database. http://faostat.fao.org/. Accessed 13 Dec 2013

  2. Danielou M, Ravry C (2005) The rise of Ghana’s pineapple industry. From successful takeoff to sustainable expansion. Afr Region Working Paper 93:1–58

    Google Scholar 

  3. Jaeger P (2008) Ghana export horticulture cluster strategic profile study. Part I—scoping review. http://www.euacpcommodities.eu/. Accessed 6 Aug 2013

  4. Chan YK, Coppens d’Eeckenbrugge G, Sanewski GM (2003) Breeding and variety improvement. In: Bartholomew DP, Paull RE, Rohrbach KG (eds) The pineapple—botany, production and uses. CABI Publishing, Wallingford, pp 33–56

    Chapter  Google Scholar 

  5. Nijssen LM, Visscher CA, Maarse H, Willemsens LC, Boelens MH (1996) Volatile compounds in food. Qualitative and quantitative data, 7th edn. TNO Nutrition and Food Research Institute, Zeist

    Google Scholar 

  6. Montero-Calderón M, Rojas-Graü MA, Martín-Belloso O (2010) Pineapple (Ananas comosus [L.] Merril) flavor. In: Hui YH (ed) Handbook of fruit and vegetable flavors. John Wiley & Sons, Inc, Hoboken, pp 391–414

    Chapter  Google Scholar 

  7. Umano K, Hagi Y, Nakahara K, Shoji A, Shibamoto T (1992) Volatile constituents of green and ripened pineapple (Ananas comosus [L.] Merr.). J Agric Food Chem 40(4):599–603

    Article  CAS  Google Scholar 

  8. Elss S, Preston C, Hertzig C, Richling E, Schreier P (2003) Über das Aromaprofil der Ananas (Ananas comosus [L.] Merr.). Eine Nachernte-Studie Flüssiges Obst 70:734–737

    CAS  Google Scholar 

  9. Steingass CB, Grauwet T, Carle R (2014) Influence of harvest maturity and fruit logistics on pineapple (Ananas comosus [L.] Merr.) volatiles assessed by headspace solid phase microextraction and gas chromatography–mass spectrometry (HS-SPME-GC/MS). Food Chem 150:382–391

    Article  CAS  Google Scholar 

  10. Steingass CB, Langen J, Carle R, Schmarr H-G (2015) Authentication of pineapple (Ananas comosus [L.] Merr.) fruit maturity stages by quantitative analysis of γ- and δ-lactones using headspace solid-phase microextraction and chirospecific gas chromatography-selected ion monitoring mass spectrometry (HS-SPME-GC-MS-SIM). Food Chem 168:496–503

    Article  CAS  Google Scholar 

  11. Kebede BT, Grauwet T, Palmers S, Vervoort L, Carle R, Hendrickx M, van Loey A (2014) Effect of high pressure high temperature processing on the volatile fraction of differently coloured carrots. Food Chem 153:340–352

    Article  CAS  Google Scholar 

  12. Pedroso MP, Ferreira EC, Hantao LW, Bogusz S Jr, Augusto F (2011) Identification of volatiles from pineapple (Ananas comosus L.) pulp by comprehensive two-dimensional gas chromatography and gas chromatography/mass spectrometry. J Sep Sci 34(13):1547–1554

    Article  CAS  Google Scholar 

  13. Cordero C, Liberto E, Bicchi C, Rubiolo P, Schieberle P, Reichenbach SE, Tao Q (2010) Profiling food volatiles by comprehensive two-dimensional gas chromatography coupled with mass spectrometry: advanced fingerprinting approaches for comparative analysis of the volatile fraction of roasted hazelnuts (Corylus avellana L.) from different origins. J Chromatogr A 1217(37):5848–5858

    Article  CAS  Google Scholar 

  14. Schmarr H-G, Bernhardt J (2010) Profiling analysis of volatile compounds from fruits using comprehensive two-dimensional gas chromatography and image processing techniques. J Chromatogr A 1217(4):565–574

    Article  CAS  Google Scholar 

  15. Williams A, Ryan D, Olarte Guasca A, Marriott P, Pang E (2005) Analysis of strawberry volatiles using comprehensive two-dimensional gas chromatography with headspace solid-phase microextraction. J Chromatogr B 817(1):97–107

    Article  CAS  Google Scholar 

  16. Steingass CB, Carle R, Schmarr H-G (2015) Ripening-dependent metabolic changes in the volatiles of pineapple (Ananas comosus (L.) Merr.) fruit II. Multivariate statistical profiling of pineapple aroma compounds based on comprehensive two-dimensional gas chromatography mass-spectrometry. Anal Bioanal Chem doi: 10.1007/s00216-015-8475-y

  17. Pino JA (2012) Odour-active compounds in pineapple (Ananas comosus [L.] Merril cv. Red Spanish). Int J Food Sci Technol 48(3):564–570

    Article  Google Scholar 

  18. Van den Dool H, Kratz PD (1963) A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J Chromatogr A 11:463–471

    Article  Google Scholar 

  19. Akioka T, Umano K (2008) Volatile components and characteristic odorants in headspace aroma obtained by vacuum extraction of Philippine pineapple (Ananas comosus [L.] Merr.). In: Tamura H, Ebeler SE, Kubota K, Takeoka GR (eds) ACS Symposium Series 988: food flavor—chemistry, sensory evaluation, and biological activity, vol 988. American Chemical Society, Washington DC, pp 57–67

    Chapter  Google Scholar 

  20. Takeoka G, Buttery RG, Flath RA, Teranishi R, Wheeler EL, Wieczorek RL, Guentert M (1989) Volatile constituents of pineapple (Ananas comosus [L.] Merr.). In: Flavor chemistry, vol. 388. American Chemical Society, Washington, DC, pp 223–237

  21. Sinuco DC, Morales AL, Duque C (2004) Componentes volátiles libres y glycosídicamente enlazados del aroma de la piña (Ananas comosus L.) variedad perolera. Rev Columbiana Química 33(1):47–56

    CAS  Google Scholar 

  22. Werkhoff P, Güntert M, Krammer G, Sommer H, Kaulen J (1998) Vacuum headspace method in aroma research: flavor chemistry of yellow passion fruits. J Agric Food Chem 46(3):1076–1093

    Article  CAS  Google Scholar 

  23. El-Sayed AM (2012) The pherobase: database of pheromones and semiochemicals. http://www.pherobase.com. Accessed 6 June 2014

  24. Acree T, Arn H (2013) Flavornet and human odor space. http://flavornet.org/. Accessed 6 June 2014

  25. Elss S, Preston C, Hertzig C, Heckel F, Richling E, Schreier P (2005) Aroma profiles of pineapple fruit (Ananas comosus [L.] Merr.) and pineapple products. LWT–Food Sci Technol 38(3):263–274

    CAS  Google Scholar 

  26. Tokitomo Y, Steinhaus M, Büttner A, Schieberle P (2005) Odor-active constituents in fresh pineapple (Ananas comosus [L.] Merr.) by quantitative and sensory evaluation. Biosci Biotechnol Biochem 69(7):1323–1330

    Article  CAS  Google Scholar 

  27. Zhu S (2009) Effect of column combinations on two-dimensional separation in comprehensive two-dimensional gas chromatography: estimation of orthogonality and exploring of mechanism. J Chromatogr A 1216(15):3312–3317

    Article  CAS  Google Scholar 

  28. Schmarr H-G, Bernhardt J, Fischer U, Stephan A, Müller P, Durner D (2010) Two-dimensional gas chromatographic profiling as a tool for a rapid screening of the changes in volatile composition occurring due to microoxygenation of red wines. Anal Chim Acta 672(1–2):114–123

    Article  CAS  Google Scholar 

  29. Kiefl J, Cordero C, Nicolotti L, Schieberle P, Reichenbach SE, Bicchi C (2012) Performance evaluation of non-targeted peak-based cross-sample analysis for comprehensive two-dimensional gas chromatography-mass spectrometry data and application to processed hazelnut profiling. J Chromatogr A 1243:81–90

    Article  CAS  Google Scholar 

  30. Bieri S, Marriott PJ (2006) Generating multiple independent retention index data in dual-secondary column comprehensive two-dimensional gas chromatography. Anal Chem 78(23):8089–8097

    Article  CAS  Google Scholar 

  31. Berger RG, Drawert F, Kollmannsberger H (1984) Biogenesis of flavour compounds in plants and fruits. XXII. Precursor-dependent accumulation of flavour compounds in pineapple fruit tissue. Deut Lebensm Rundsch (10):299–304

  32. Elss S, Grünewald L, Richling E, Schreier P (2004) Occurrence of 2-ethylhexanoic acid in foods packed in glass jars. Food Addit Contam 21(8):811–814

    Article  CAS  Google Scholar 

  33. Czerny M, Buettner A (2009) Odor-active compounds in cardboard. J Agric Food Chem 57(21):9979–9984

    Article  CAS  Google Scholar 

  34. McLafferty FW, Tureček F (1993) Interpretation of mass spectra, 4th edn. University Science, Sausalito

    Google Scholar 

  35. Schmarr H-G, Sang W, Ganss S, Fischer U, Köpp B, Schulz C, Potouridis T (2008) Analysis of aldehydes via headspace SPME with on-fiber derivatization to their O-(2,3,4,5,6-pentafluorobenzyl)oxime derivatives and comprehensive 2D-GC-MS. J Sep Sci 31(19):3458–3465

    Article  CAS  Google Scholar 

  36. Weldegergis BT, Villiers AD, McNeish C, Seethapathy S, Mostafa A, Górecki T, Crouch AM (2011) Characterisation of volatile components of Pinotage wines using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC×GC-TOFMS). Food Chem 129(1):188–199

    Article  CAS  Google Scholar 

  37. Berger RG, Drawert F, Kollmannsberger H, Nitz S, Schraufstetter B (1985) Novel volatiles in pineapple fruit and their sensory properties. J Agric Food Chem 33(2):232–235

    Article  CAS  Google Scholar 

  38. Naef R, Velluz A, Jaquier A (2006) The perfume of carabao mangoes (Mangifera indica L.): identification of uncommon unsaturated fatty acid esters in the SPME of the intact fruit. Eur Food Res Technol 222(5–6):554–558

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mr. Frank Oberschilp (Peelco Ltd., Accra, Ghana) and Mr. Fritz Schumacher (Schumacher GmbH, Filderstadt-Bernhausen, Germany) for supplying the fruits. One of the authors (C.B.S.) is grateful for funding of the present research by the Landesgraduiertenförderung Baden-Württemberg. Financial support from the Ministerium für Umwelt, Landwirtschaft, Ernährung, Weinbau und Forsten (MULEWF, Rheinland-Pfalz, Germany) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christof Björn Steingass.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steingass, C.B., Carle, R. & Schmarr, HG. Ripening-dependent metabolic changes in the volatiles of pineapple (Ananas comosus (L.) Merr.) fruit: I. Characterization of pineapple aroma compounds by comprehensive two-dimensional gas chromatography-mass spectrometry. Anal Bioanal Chem 407, 2591–2608 (2015). https://doi.org/10.1007/s00216-015-8474-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-8474-z

Keywords

Navigation