Skip to main content

Advertisement

Log in

A microfluidic digital single-cell assay for the evaluation of anticancer drugs

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Digital single-cell assays hold high potentials for the analysis of cell apoptosis and the evaluation of chemotherapeutic reagents for cancer therapy. In this paper, a microfluidic hydrodynamic trapping system was developed for digital single-cell assays with the capability of monitoring cellular dynamics over time. The microfluidic chip was designed with arrays of bypass structures for trapping individual cells without the need for surface modification, external electric force, or robotic equipment. After optimization of the bypass structure by both numerical simulations and experiments, a single-cell trapping efficiency of ∼90 % was achieved. We demonstrated the method as a digital single-cell assay for the evaluation of five clinically established chemotherapeutic reagents. As a result, the half maximal inhibitory concentration (IC50) values of these compounds could be conveniently determined. We further modeled the gradual decrease of active drugs over time which was often observed in vivo after an injection to investigate cell apoptosis against chemotherapeutic reagents. The developed method provided a valuable means for cell apoptotic analysis and evaluation of anticancer drugs.

A microfluidic hydrodynamic trapping system was developed for digital single-cell assays with the capability of drug evaluation

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE (1997) Geometric control of cell life and death. Science 276(5317):1425–1428

    Article  CAS  Google Scholar 

  2. Connelly JT, Gautrot JE, Trappmann B, Tan DW, Donati G, Huck WT, Watt FM (2010) Actin and serum response factor transduce physical cues from the microenvironment to regulate epidermal stem cell fate decisions. Nat Cell Biol 12(7):711–718. doi:10.1038/ncb2074

    Article  CAS  Google Scholar 

  3. Charest JL, Jennings JM, King WP, Kowalczyk AP, Garcia AJ (2009) Cadherin-mediated cell-cell contact regulates keratinocyte differentiation. J Investig Dermatol 129(3):564–572. doi:10.1038/jid.2008.265

    Article  CAS  Google Scholar 

  4. Gray DS, Liu WF, Shen CJ, Bhadriraju K, Nelson CM, Chen CS (2008) Engineering amount of cell-cell contact demonstrates biphasic proliferative regulation through RhoA and the actin cytoskeleton. Exp Cell Res 314(15):2846–2854. doi:10.1016/j.yexcr.2008.06.023

    Article  CAS  Google Scholar 

  5. Nelson CM, Chen CS (2003) VE-cadherin simultaneously stimulates and inhibits cell proliferation by altering cytoskeletal structure and tension. J Cell Sci 116(Pt 17):3571–3581. doi:10.1242/jcs.00680

    Article  CAS  Google Scholar 

  6. Jiang X, Bruzewicz DA, Wong AP, Piel M, Whitesides GM (2005) Directing cell migration with asymmetric micropatterns. Proc Natl Acad Sci U S A 102(4):975–978. doi:10.1073/pnas.0408954102

    Article  CAS  Google Scholar 

  7. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    Article  CAS  Google Scholar 

  8. Lapotko D (2004) Monitoring of apoptosis in intact single cells with photothermal microscope. Cytom Part A : J Int Soc Anal Cytol 58(2):111–119. doi:10.1002/cyto.a.20001

    Article  Google Scholar 

  9. Valero A, Merino F, Wolbers F, Luttge R, Vermes I, Andersson H, van den Berg A (2005) Apoptotic cell death dynamics of HL60 cells studied using a microfluidic cell trap device. Lab Chip 5(1):49–55. doi:10.1039/b415813j

    Article  CAS  Google Scholar 

  10. Svahn HA, van den Berg A (2007) Single cells or large populations? Lab Chip 7(5):544–546. doi:10.1039/b704632b

    Article  Google Scholar 

  11. Emonet T, Macal CM, North MJ, Wickersham CE, Cluzel P (2005) AgentCell: a digital single-cell assay for bacterial chemotaxis. Bioinformatics 21(11):2714–2721. doi:10.1093/bioinformatics/bti391

    Article  CAS  Google Scholar 

  12. Lopez JM (2010) Digital kinases: a cell model for sensing, integrating and making choices. Commun Integr Biol 3(2):146–150

    Article  Google Scholar 

  13. Feng X, Du W, Luo Q, Liu BF (2009) Microfluidic chip: next-generation platform for systems biology. Anal Chim Acta 650(1):83–97. doi:10.1016/j.aca.2009.04.051

    Article  CAS  Google Scholar 

  14. Mu X, Zheng W, Sun J, Zhang W, Jiang X (2013) Microfluidics for manipulating cells. Small 9(1):9–21. doi:10.1002/smll.201200996

    Article  CAS  Google Scholar 

  15. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442(7101):368–373. doi:10.1038/nature05058

    Article  CAS  Google Scholar 

  16. Sun J, Chen P, Feng X, Du W, Liu BF (2011) Development of a microfluidic cell-based biosensor integrating a millisecond chemical pulse generator. Biosens Bioelectron 26(8):3413–3419. doi:10.1016/j.bios.2011.01.013

    Article  CAS  Google Scholar 

  17. Dittrich PS, Manz A (2006) Lab-on-a-chip: microfluidics in drug discovery. Nat Rev Drug Discovery 5(3):210–218. doi:10.1038/nrd1985

    Article  CAS  Google Scholar 

  18. Voldman J, Gray ML, Toner M, Schmidt MA (2002) A microfabrication-based dynamic array cytometer. Anal Chem 74(16):3984–3990

    Article  CAS  Google Scholar 

  19. Gray DS, Tan JL, Voldman J, Chen CS (2004) Dielectrophoretic registration of living cells to a microelectrode array. Biosens Bioelectron 19(12):1765–1774

    Article  CAS  Google Scholar 

  20. Thomas RS, Morgan H, Green NG (2009) Negative DEP traps for single cell immobilisation. Lab Chip 9(11):1534–1540. doi:10.1039/b819267g

    Article  CAS  Google Scholar 

  21. Tang J, Peng R, Ding J (2010) The regulation of stem cell differentiation by cell-cell contact on micropatterned material surfaces. Biomaterials 31(9):2470–2476. doi:10.1016/j.biomaterials.2009.12.006

    Article  CAS  Google Scholar 

  22. Lu Z, Moraes C, Ye G, Simmons CA, Sun Y (2010) Single cell deposition and patterning with a robotic system. PLoS One 5(10):e13542. doi:10.1371/journal.pone.0013542

    Article  Google Scholar 

  23. Pamme N (2006) Magnetism and microfluidics. Lab Chip 6(1):24–38. doi:10.1039/b513005k

    Article  CAS  Google Scholar 

  24. Donolato M, Torti A, Kostesha N, Deryabina M, Sogne E, Vavassori P, Hansen MF, Bertacco R (2011) Magnetic domain wall conduits for single cell applications. Lab Chip 11(17):2976–2983. doi:10.1039/c1lc20300b

    Article  CAS  Google Scholar 

  25. Huang KW, Su TW, Ozcan A, Chiou PY (2013) Optoelectronic tweezers integrated with lens-free holographic microscopy for wide-field interactive cell and particle manipulation on a chip. Lab Chip 13(12):2278–2284. doi:10.1039/c3lc50168j

    Article  CAS  Google Scholar 

  26. Xie Y, Zhao C, Zhao Y, Li S, Rufo J, Yang S, Guo F, Huang TJ (2013) Optoacoustic tweezers: a programmable, localized cell concentrator based on opto-thermally generated, acoustically activated, surface bubbles. Lab Chip 13(9):1772–1779. doi:10.1039/c3lc00043e

    Article  CAS  Google Scholar 

  27. Rettig JR, Folch A (2005) Large-scale single-cell trapping and imaging using microwell arrays. Anal Chem 77(17):5628–5634. doi:10.1021/ac0505977

    Article  CAS  Google Scholar 

  28. Selimovic S, Piraino F, Bae H, Rasponi M, Redaelli A, Khademhosseini A (2011) Microfabricated polyester conical microwells for cell culture applications. Lab Chip 11(14):2325–2332. doi:10.1039/c1lc20213h

    Article  CAS  Google Scholar 

  29. Di Carlo D, Aghdam N, Lee LP (2006) Single-cell enzyme concentrations, kinetics, and inhibition analysis using high-density hydrodynamic cell isolation arrays. Anal Chem 78(14):4925–4930. doi:10.1021/ac060541s

    Article  Google Scholar 

  30. Skelley AM, Kirak O, Suh H, Jaenisch R, Voldman J (2009) Microfluidic control of cell pairing and fusion. Nat Methods 6(2):147–152. doi:10.1038/nmeth.1290

    Article  CAS  Google Scholar 

  31. Frimat JP, Becker M, Chiang YY, Marggraf U, Janasek D, Hengstler JG, Franzke J, West J (2011) A microfluidic array with cellular valving for single cell co-culture. Lab Chip 11(2):231–237. doi:10.1039/c0lc00172d

    Article  CAS  Google Scholar 

  32. Duffy DC, McDonald JC, Schueller OJ, Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem 70(23):4974–4984. doi:10.1021/ac980656z

    Article  CAS  Google Scholar 

  33. Chen P, Feng X, Sun J, Wang Y, Du W, Liu BF (2010) Hydrodynamic gating for sample introduction on a microfluidic chip. Lab Chip 10(11):1472–1475. doi:10.1039/b925096d

    Article  CAS  Google Scholar 

  34. Yao S, Bakajin O (2007) Improvements in mixing time and mixing uniformity in devices designed for studies of protein folding kinetics. Anal Chem 79(15):5753–5759. doi:10.1021/ac070528n

    Article  CAS  Google Scholar 

  35. Li Y, Xu Y, Feng X, Liu BF (2012) A rapid microfluidic mixer for high-viscosity fluids to track ultrafast early folding kinetics of G-quadruplex under molecular crowding conditions. Anal Chem 84(21):9025–9032. doi:10.1021/ac301864r

    CAS  Google Scholar 

  36. Di Carlo D, Wu LY, Lee LP (2006) Dynamic single cell culture array. Lab Chip 6(11):1445–1449. doi:10.1039/b605937f

    Article  Google Scholar 

  37. Ye N, Qin J, Shi W, Liu X, Lin B (2007) Cell-based high content screening using an integrated microfluidic device. Lab Chip 7(12):1696–1704

    Article  CAS  Google Scholar 

  38. Alley MC, Scudiero DA, Monks A, Hursey ML, Czerwinski MJ, Fine DL, Abbott BJ, Mayo JG, Shoemaker RH, Boyd MR (1988) Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay. Cancer Res 48(3):589–601

    CAS  Google Scholar 

  39. Wang D, Lippard SJ (2005) Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov 4(4):307–320

    Article  CAS  Google Scholar 

  40. McGowan AJ, Ruiz-Ruiz MC, Gorman AM, Lopez-Rivas A, Cotter TG (1996) Reactive oxygen intermediate(s) (ROI): common mediator(s) of poly(ADP-ribose)polymerase (PARP) cleavage and apoptosis. FEBS Lett 392(3):299–303

    Article  CAS  Google Scholar 

  41. Dorr RT (1988) New findings in the pharmacokinetic, metabolic, and drug-resistance aspects of mitomycin C. Semin Oncol 15(3 Suppl 4):32–41

    CAS  Google Scholar 

  42. Bendas CM (1982) The effect of theophylline upon the activity of methotrexate and 5′-fluorouracil in HeLa cell cultures. Anticancer Res 2(6):373–376

    CAS  Google Scholar 

  43. Schmitt CA, Fridman JS, Yang M, Lee S, Baranov E, Hoffman RM, Lowe SW (2002) A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. Cell 109(3):335–346

    Article  CAS  Google Scholar 

  44. Mengeaud V, Josserand J, Girault HH (2002) Mixing processes in a zigzag microchannel: finite element simulations and optical study. Anal Chem 74(16):4279–4286

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the National Basic Research Program of China (2011CB910403) and the National Natural Science Foundation of China (30970692, 21075045, and 21275060).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojun Feng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 607kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Tang, X., Feng, X. et al. A microfluidic digital single-cell assay for the evaluation of anticancer drugs. Anal Bioanal Chem 407, 1139–1148 (2015). https://doi.org/10.1007/s00216-014-8325-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-8325-3

Keywords

Navigation