Skip to main content
Log in

Miniaturized DNA aptamer-based monolithic sorbent for selective extraction of a target analyte coupled on-line to nanoLC

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A complete characterization of a novel target-specific DNA aptamer-based miniaturized solid phase extraction (SPE)-sorbent coupled on-line to nanoLC is presented. A miniaturized oligosorbent (mOS) was prepared via the in situ sol-gel synthesis of a hybrid organic-inorganic monolith in 100 μm i.d. capillary columns using tetraethoxysilane and 3-aminopropyltriethoxysilane as precursors, followed by covalent binding of a 5′-amino-modified DNA aptamer with a C12 spacer arm specific for a molecule of small molecular weight. Ochratoxin A (OTA), one of the most abundant naturally occurring mycotoxins, was chosen as model analyte to demonstrate the principle of such an approach. The mOS was coupled on-line to RP-nanoLC-LIF. Selective extraction of OTA on several mOSs was demonstrated with an average extraction recovery above 80 % when percolating spiked binding buffer and a low recovery on control monoliths grafted with a non-specific aptamer. Reproducibility of mOSs preparation was highlighted by comparing extraction yields. Otherwise, the mOSs demonstrated no cross-reactivity towards an OTA structural analogue, i.e., ochratoxin B. Due to the high specific surface area of the hybrid silica-based monolith, the coverage density of DNA aptamers covalently immobilized in the capillaries was very high and reached 6.27 nmol μL−1, thus leading to a capacity above 5 ng of OTA. This miniaturized device was then applied to the selective extraction of OTA from beer samples. It revealed to be effective in isolating OTA from this complex matrix, thus improving the reliability of its analysis at the trace level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hennion M-C, Pichon V (2003) Immuno-based sample preparation for trace analysis. J Chromatogr A 1000(1–2):29–52

    Article  CAS  Google Scholar 

  2. Delaunay N, Pichon V, Hennion M-C (2000) Immunoaffinity solid-phase extraction for the trace-analysis of low-molecular-mass analytes in complex sample matrices. J Chromatogr B Biomed Appl 745(1):15–37

    Article  CAS  Google Scholar 

  3. Delaunay-Bertoncini N, Pichon V, Hennion MC (2001) Immunoextraction: a highly selective method for sample preparation. LC-GC 14(3):162–172

    CAS  Google Scholar 

  4. Pichon V, Chapuis-Hugon F, Hennion MC (2012) 2.19—bioaffinity sorbents. In: Pawliszyn J (ed) Comprehensive sampling and sample preparation, volume 2: theory of extraction techniques, vol 2. Academic, Oxford, pp 359–388

    Chapter  Google Scholar 

  5. Cruz-Aguado JA, Penner G (2008) Determination of ochratoxin A with a DNA aptamer. J Agric Food Chem 56(22):10456–10461

    Article  CAS  Google Scholar 

  6. Madru B, Chapuis-Hugon F, Pichon V (2011) Novel extraction supports based on immobilised aptamers: evaluation for the selective extraction of cocaine. Talanta 85(1):616–624

    Article  CAS  Google Scholar 

  7. Madru B, Chapuis-Hugon F, Peyrin E, Vr P (2009) Determination of cocaine in human plasma by selective solid-phase extraction using an aptamer-based sorbent. Anal Chem 81(16):7081–7086

    Article  CAS  Google Scholar 

  8. Stoltenburg R, Reinemann C, Strehlitz B (2007) SELEX—a (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomol Eng 24(4):381–403

    Article  CAS  Google Scholar 

  9. Luzi E, Minunni M, Tombelli S, Mascini M (2003) New trends in affinity sensing: aptamers for ligand binding. TrAC Trends Anal Chem 22(11):810–818

    Article  CAS  Google Scholar 

  10. Brumbt A, Ravelet C, Grosset C, Ravel A, Villet A, Peyrin E (2005) Chiral stationary phase based on a biostable l-RNA aptamer. Anal Chem 77(7):1993–1998

    Article  CAS  Google Scholar 

  11. Deng Q, Watson CJ, Kennedy RT (2003) Aptamer affinity chromatography for rapid assay of adenosine in microdialysis samples collected in vivo. J Chromatogr A 1005(1–2):123–130

    Article  CAS  Google Scholar 

  12. Romig TS, Bell C, Drolet DW (1999) Aptamer affinity chromatography: combinatorial chemistry applied to protein purification. J Chromatogr B Biomed Appl 731(2):275–284

    Article  CAS  Google Scholar 

  13. Hadj Ali W, Pichon V (2014) Characterization of oligosorbents and application to the purification of ochratoxin A from wheat extracts. Anal Bioanal Chem 406(4):1233–1240

    Article  CAS  Google Scholar 

  14. Chapuis-Hugon F, Boisbaudry A, Madru B, Pichon V (2011) New extraction sorbent based on aptamers for the determination of ochratoxin A in red wine. Anal Bioanal Chem 400(5):1199–1207

    Article  CAS  Google Scholar 

  15. Michaud M, Jourdan E, Villet A, Ravel A, Grosset C, Peyrin E (2003) A DNA aptamer as a new target-specific chiral selector for HPLC. J Am Chem Soc 125(28):8672–8679

    Article  CAS  Google Scholar 

  16. Michaud M, Jourdan E, Ravelet C, Villet A, Ravel A, Grosset C, Peyrin E (2004) Immobilized DNA aptamers as target-specific chiral stationary phases for resolution of nucleoside and amino acid derivative enantiomers. Anal Chem 76(4):1015–1020

    Article  CAS  Google Scholar 

  17. Ravelet C, Boulkedid R, Ravel A, Grosset C, Villet A, Fize J, Peyrin E (2005) A l-RNA aptamer chiral stationary phase for the resolution of target and related compounds. J Chromatogr A 1076(1–2):62–70

    Article  CAS  Google Scholar 

  18. Ruta J, Ravelet C, Désiré J, Décout J-L, Peyrin E (2008) Covalently bonded DNA aptamer chiral stationary phase for the chromatographic resolution of adenosine. Anal Bioanal Chem 390(4):1051–1057

    Article  CAS  Google Scholar 

  19. Cho S, Lee S-H, Chung W-J, Kim Y-K, Lee Y-S, Kim B-G (2004) Microbead-based affinity chromatography chip using RNA aptamer modified with photocleavable linker. Electrophoresis 25(21–22):3730–3739

    Article  CAS  Google Scholar 

  20. Chung W-J, Kim M-S, Cho S, Park S-S, Kim J-H, Kim Y-K, Kim B-G, Lee Y-S (2005) Microaffinity purification of proteins based on photolytic elution: toward an efficient microbead affinity chromatography on a chip. Electrophoresis 26(3):694–702

    Article  CAS  Google Scholar 

  21. Deng Q, German I, Buchanan D, Kennedy RT (2001) Retention and separation of adenosine and analogues by affinity chromatography with an aptamer stationary phase. Anal Chem 73(22):5415–5421

    Article  CAS  Google Scholar 

  22. Zhang YP, Zhang YJ, Gong WJ, Chen N, Gopalan A-I, Lee KP (2010) Novel fabrication of on-column capillary inlet frits through flame induced sintering of stainless steel particles. Microchem J 95(1):67–73

    Article  CAS  Google Scholar 

  23. Connor AC, McGown LB (2006) Aptamer stationary phase for protein capture in affinity capillary chromatography. J Chromatogr A 1111(2):115–119

    Article  CAS  Google Scholar 

  24. Rehder MA, McGown LB (2001) Open-tubular capillary electrochromatography of bovine β-lactoglobulin variants A and B using an aptamer stationary phase. Electrophoresis 22(17):3759–3764

    Article  CAS  Google Scholar 

  25. Rehder-Silinski MA, McGown LB (2003) Capillary electrochromatographic separation of bovine milk proteins using a G-quartet DNA stationary phase. J Chromatogr A 1008(2):233–245

    Article  CAS  Google Scholar 

  26. Clark SL, Remcho VT (2003) Open tubular liquid chromatographic separations using an aptamer stationary phase. J Sep Sci 26(15–16):1451–1454

    Article  CAS  Google Scholar 

  27. Kotia RB, Li L, McGown LB (2000) Separation of nontarget compounds by DNA aptamers. Anal Chem 72(4):827–831

    Article  CAS  Google Scholar 

  28. Charles JAM, McGown LB (2002) Separation of Trp-Arg and Arg-Trp using G-quartet-forming DNA oligonucleotides in open-tubular capillary electrochromatography. Electrophoresis 23(11):1599–1604

    Article  CAS  Google Scholar 

  29. Clark SL, Remcho VT (2003) Electrochromatographic retention studies on a flavin-binding RNA aptamer sorbent. Anal Chem 75(21):5692–5696

    Article  CAS  Google Scholar 

  30. Dick LW Jr, Swinteck BJ, McGown LB (2004) Albumins as a model system for investigating separations of closely related proteins on DNA stationary phases in capillary electrochromatography. Anal Chim Acta 519(2):197–205

    Article  CAS  Google Scholar 

  31. Gao C, Sun X, Woolley AT (2013) Fluorescent measurement of affinity binding between thrombin and its aptamers using on-chip affinity monoliths. J Chromatogr A 1291:92–96

    Article  CAS  Google Scholar 

  32. Zhao Q, Li X-F, Le XC (2008) Aptamer-modified monolithic capillary chromatography for protein separation and detection. Anal Chem 80(10):3915–3920

    Article  CAS  Google Scholar 

  33. Zhao Q, Li X-F, Shao Y, Le XC (2008) Aptamer-based affinity chromatographic assays for thrombin. Anal Chem 80(19):7586–7593

    Article  CAS  Google Scholar 

  34. Deng N, Liang Z, Liang Y, Sui Z, Zhang L, Wu Q, Yang K, Zhang L, Zhang Y (2012) Aptamer modified organic–inorganic hybrid silica monolithic capillary columns for highly selective recognition of thrombin. Anal Chem 84(23):10186–10190

    Article  CAS  Google Scholar 

  35. Xu L, Shi Z-G, Feng Y-Q (2011) Porous monoliths: sorbents for miniaturized extraction in biological analysis. Anal Bioanal Chem 399(10):3345–3357

    Article  CAS  Google Scholar 

  36. Brothier F, Pichon V (2013) Immobilized antibody on a hybrid organic–inorganic monolith: capillary immunoextraction coupled on-line to nanoLC-UV for the analysis of microcystin-LR. Anal Chim Acta 792:52–58

    Article  CAS  Google Scholar 

  37. Mosesso P, Cinelli S, Piñero J, Bellacima R, Pepe G (2008) In vitro cytogenetic results supporting a DNA nonreactive mechanism for ochratoxin A, potentially relevant for its carcinogenicity. Chem Res Toxicol 21(6):1235–1243

    Article  CAS  Google Scholar 

  38. Muñoz K, Vega M, Rios G, Muñoz S, Madariaga R (2006) Preliminary study of ochratoxin A in human plasma in agricultural zones of Chile and its relation to food consumption. Food Chem Toxicol 44(11):1884–1889

    Article  Google Scholar 

  39. Turner NW, Subrahmanyam S, Piletsky SA (2009) Analytical methods for determination of mycotoxins: a review. Anal Chim Acta 632(2):168–180

    Article  CAS  Google Scholar 

  40. Kabak B (2009) Ochratoxin A in cereal-derived products in Turkey: occurrence and exposure assessment. Food Chem Toxicol 47(2):348–352

    Article  CAS  Google Scholar 

  41. Pfohl-Leszkowicz A, Manderville RA (2007) Ochratoxin A: an overview on toxicity and carcinogenicity in animals and humans. Mol Nutr Food Res 51(1):61–99

    Article  CAS  Google Scholar 

  42. Barthelmebs L, Hayat A, Limiadi AW, Marty J-L, Noguer T (2011) Electrochemical DNA aptamer-based biosensor for OTA detection, using superparamagnetic nanoparticles. Sensors Actuators B 156(2):932–937

    Article  CAS  Google Scholar 

  43. Chen J, Fang Z, Liu J, Zeng L (2012) A simple and rapid biosensor for ochratoxin A based on a structure-switching signaling aptamer. Food Control 25(2):555–560

    Article  CAS  Google Scholar 

  44. De Girolamo A, McKeague M, Miller JD, DeRosa MC, Visconti A (2011) Determination of ochratoxin A in wheat after clean-up through a DNA aptamer-based solid phase extraction column. Food Chem 127(3):1378–1384

    Article  Google Scholar 

  45. Soler-Illia GJAA, Sanchez C, Lebeau B, Patarin J (2002) Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chem Rev 102(11):4093–4138

    Article  Google Scholar 

  46. Wight AP, Davis ME (2002) Design and preparation of organic–inorganic hybrid catalysts. Chem Rev 102(10):3589–3614

    Article  CAS  Google Scholar 

  47. Hoffmann F, Cornelius M, Morell J, Fröba M (2006) Silica-based mesoporous organic–inorganic hybrid materials. Angew Chem Int Ed 45(20):3216–3251

    Article  CAS  Google Scholar 

  48. Hoffmann F, Froba M (2011) Vitalising porous inorganic silica networks with organic functions-PMOs and related hybrid materials. Chem Soc Rev 40(2):608–620

    Article  CAS  Google Scholar 

  49. Mehdi A, Reye C, Corriu R (2011) From molecular chemistry to hybrid nanomaterials. Design and functionalization. Chem Soc Rev 40(2):563–574

    Article  CAS  Google Scholar 

  50. Zhu T, Row KH (2012) Preparation and applications of hybrid organic–inorganic monoliths: a review. J Sep Sci 35(10–11):1294–1302

    Article  CAS  Google Scholar 

  51. Ma J, Liang Z, Qiao X, Deng Q, Tao D, Zhang L, Zhang Y (2008) Organic–inorganic hybrid silica monolith based immobilized trypsin reactor with high enzymatic activity. Anal Chem 80(8):2949–2956

    Article  CAS  Google Scholar 

  52. Rhouati A, Hayat A, Hernandez DB, Meraihi Z, Munoz R, Marty J-L (2013) Development of an automated flow-based electrochemical aptasensor for on-line detection of ochratoxin A. Sensors Actuators B 176:1160–1166

    Article  CAS  Google Scholar 

  53. Rhouati A, Paniel N, Meraihi Z, Marty J-L (2011) Development of an oligosorbent for detection of ochratoxin A. Food Control 22(11):1790–1796

    Article  CAS  Google Scholar 

  54. Bazin I, Faucet-Marquis V, Monje M-C, El Khoury M, Marty J-L, Pfohl-Leszkowicz A (2013) Impact of pH on the stability and the cross-reactivity of ochratoxin A and citrinin. Toxins 5(12):2324–2340

    Article  CAS  Google Scholar 

  55. Dohnal V, Pavlíková L, Kuca K (2010) The pH and mobile phase composition effects ochratoxin A fluorescence at liquid chromatography. J Chromatogr Sci 48(9):766–770

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the French National Research Agency (ANR Program CESA 2010, Mycodiag Project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valérie Pichon.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 53 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brothier, F., Pichon, V. Miniaturized DNA aptamer-based monolithic sorbent for selective extraction of a target analyte coupled on-line to nanoLC. Anal Bioanal Chem 406, 7875–7886 (2014). https://doi.org/10.1007/s00216-014-8256-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-8256-z

Keywords

Navigation