Skip to main content
Log in

Column–coupling strategies for multidimensional electrophoretic separation techniques

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Multidimensional electrophoretic separations represent one of the most common strategies for dealing with the analysis of complex samples. In recent years we have been witnessing the explosive growth of separation techniques for the analysis of complex samples in applications ranging from life sciences to industry. In this sense, electrophoretic separations offer several strategic advantages such as excellent separation efficiency, different methods with a broad range of separation mechanisms, and low liquid consumption generating less waste effluents and lower costs per analysis, among others. Despite their impressive separation efficiency, multidimensional electrophoretic separations present some drawbacks that have delayed their extensive use: the volumes of the columns, and consequently of the injected sample, are significantly smaller compared to other analytical techniques, thus the coupling interfaces between two separations components must be very efficient in terms of providing geometrical precision with low dead volume. Likewise, very sensitive detection systems are required. Additionally, in electrophoretic separation techniques, the surface properties of the columns play a fundamental role for electroosmosis as well as the unwanted adsorption of proteins or other complex biomolecules. In this sense the requirements for an efficient coupling for electrophoretic separation techniques involve several aspects related to microfluidics and physicochemical interactions of the electrolyte solutions and the solid capillary walls. It is interesting to see how these multidimensional electrophoretic separation techniques have been used jointly with different detection techniques, for intermediate detection as well as for final identification and quantification, particularly important in the case of mass spectrometry. In this work we present a critical review about the different strategies for coupling two or more electrophoretic separation techniques and the different intermediate and final detection methods implemented for such separations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Zhang Z, Zhang F, Liu Y (2013) J Chromatogr Sci 51:666–683

    CAS  Google Scholar 

  2. Valcárcel M, Arce L, Ríos A (2001) J Chromatogr A 924:3–30

    Google Scholar 

  3. Smithies O, Poulik M (1956) Nature 177:1033

    CAS  Google Scholar 

  4. O’Farrell PH (1975) J Biol Chem 250:4007–4021

    Google Scholar 

  5. Cooper JW, Wang Y, Lee CS (2004) Electrophoresis 25:3913–3926

    CAS  Google Scholar 

  6. Kašička V (2014) Electrophoresis 35:69–95

    Google Scholar 

  7. Geiger M, Hogerton AL, Bowser MT (2011) Anal Chem 84:577–596

    Google Scholar 

  8. Gebauer P, Malá Z, Boček P (2011) Electrophoresis 32:83–89

    CAS  Google Scholar 

  9. Malá Z, Gebauer P, Boček P (2013) Electrophoresis 34:19–28

    Google Scholar 

  10. Everaerts FM, Verheggen TP, Mikkers FE (1979) J Chromatogr A 169:21–38

    CAS  Google Scholar 

  11. Mikuš P, Marákova K (2011) Column coupling electrophoresis in biomedical analysis. In: Fazel R (ed) Biomedical engineering—from theory to applications. Intech, Rijeka

    Google Scholar 

  12. Tia S, Herr A (2009) Lab Chip 9:2524–2536

    CAS  Google Scholar 

  13. Guiochon G, Beaver L, Gonnord MF, Siolffi AM, Zakaria M (1983) J Chromatogr 255:415–437

    CAS  Google Scholar 

  14. Watson NE, Davis JM, Synovec RE (2007) Anal Chem 79:7924–7927

    CAS  Google Scholar 

  15. Pourhaghighi MR, Karzand M, Girault HH (2011) Anal Chem 83:7676–7681

    CAS  Google Scholar 

  16. Giddings J (1987) J High Res Chromatogr 10:319–323

    CAS  Google Scholar 

  17. Liu Z, Patterson D (1995) Anal Chem 67:3840–3845

    CAS  Google Scholar 

  18. Murphy RE, Schure MR, Foley JP (1998) Anal Chem 70:1585–1594

    CAS  Google Scholar 

  19. Michels DA, Hu S, Schoenherr RM, Eggertson MJ, Dovichi NJ (2002) Mol Cell Proteomics 1:69–74

    CAS  Google Scholar 

  20. Gilar M, Olivova P, Daly AE, Gebler JC (2005) Anal Chem 77:6426–6434

    CAS  Google Scholar 

  21. Posner JD, Santiago JG (2006) J Fluid Mech 555:1–42

    Google Scholar 

  22. Anderson JL, Prieve DC (1984) Sep Purif Method 13:67–103

    CAS  Google Scholar 

  23. Bings NH, Wang C, Skinner CD, Colyer CL, Thibault P, Harrison DJ (1999) Anal Chem 71:3292–3296

    CAS  Google Scholar 

  24. Issaq HJ, Chan KC, Janini GM, Conrads TP, Veenstra TD (2005) J Chromatogr B 817:35–47

    CAS  Google Scholar 

  25. Kaniansky D, Marák J (1990) J Chromatogr 498:191–204

    CAS  Google Scholar 

  26. Zelenskỳ I, Zelenská V, Kaniansky D, Havaši P, Lednárová V (1984) J Chromatogr A 294:317–327

    Google Scholar 

  27. Chrambach A, Boček P (1985) TrAC-Trend Anal Chem 4:224–229

    CAS  Google Scholar 

  28. Kaniansky D, Madajová V, Marák J, Šimuničová E, Zelenskỳ I, Zelenská V (1987) J Chromatogr A 390:51–60

    CAS  Google Scholar 

  29. Kaniansky D, Masár M, Bielčiková J (1997) J Chromatogr A 792:483–494

    CAS  Google Scholar 

  30. Foret F, Szoko E, Karger BL (1992) J Chromatogr 608:3–12

    CAS  Google Scholar 

  31. Bushey MM, Jorgenson JW (1990) Anal Chem 62:978–984

    CAS  Google Scholar 

  32. Lemmo AV, Jorgenson JW (1993) Anal Chem 65:1576–1581

    CAS  Google Scholar 

  33. Moore AW, Jorgenson JW (1995) Anal Chem 67:3448–3455

    CAS  Google Scholar 

  34. Lewis KC, Opiteck GJ, Jorgenson JW (1997) J Am Soc Mass Spectrom 8:495–500

    CAS  Google Scholar 

  35. Hooker TF, Jorgenson JW (1997) Anal Chem 69:4134–4142

    CAS  Google Scholar 

  36. Lada MW, Schaller G, Carriger MH, Vickroy TW, Kennedy RT (1995) Anal Chim Acta 307:217–225

    CAS  Google Scholar 

  37. Michels DA, Hu S, Dambrowitz KA, Eggertson MJ, Lauterbach K, Dovichi NJ (2004) Electrophoresis 25:3098–3105

    CAS  Google Scholar 

  38. Evans CR, Jorgenson JW (2004) Anal Bioanal Chem 378:1952–1961

    CAS  Google Scholar 

  39. Schoenherr RM, Ye M, Vannatta M, Dovichi NJ (2007) Anal Chem 79:2230–2238

    CAS  Google Scholar 

  40. Wojcik R, Vannatta M, Dovichi NJ (2010) Anal Chem 82:1564–1567

    CAS  Google Scholar 

  41. Li Y, Wojcik R, Dovichi NJ (2011) J Chromatogr A 1218:2007–2011

    CAS  Google Scholar 

  42. Mou S, Sun L, Dovichi NJ (2013) Anal Chem 85:10692–10696

    CAS  Google Scholar 

  43. Flaherty RJ, Huge BJ, Bruce SM, Dada OO, Dovichi NJ (2013) Analyst 138:3621–3625

    CAS  Google Scholar 

  44. Zhu C, He X, Kraly JR, Jones MR, Whitmore CD, Gomez DG, Eggertson M, Quigley W, Boardman A, Dovichi NJ (2007) Anal Chem 79:765–768

    CAS  Google Scholar 

  45. Stegehuis DS, Irth H, Tjaden UR, van der Greef J (1991) J Chromatogr 538:393–402

    CAS  Google Scholar 

  46. Mazereeuw M, Tjaden U, van der Greef J (1994) J Chromatogr A 67:151–157

    Google Scholar 

  47. van der Vlis E, Mazereeuw M, Tjaden U, Irth H, van der Greef J (1995) J Chromatogr A 712:227–234

    CAS  Google Scholar 

  48. Mazereeuw M, Spikmans V, Tjaden U, van der Greef J (2000) J Chromatogr A 879:219–233

    CAS  Google Scholar 

  49. Bowerbank CR, Lee ML (2001) J Microcolumn Sep 13:361–370

    CAS  Google Scholar 

  50. Peterson ZD, Bowerbank CR, Collins DC, Graves SW, Lee ML (2003) J Chromatogr A 992:169–179

    CAS  Google Scholar 

  51. Chen J, Balgley B, DeVoe D, Lee C (2003) Anal Chem 75:3145–3152

    CAS  Google Scholar 

  52. Zhou F, Johnston MV (2004) Anal Chem 76:2734–2740

    CAS  Google Scholar 

  53. Stroink T, Ortiz MC, Bult A, Lingeman H, de Jong GJ, Underberg WJ (2005) J Chromatogr B 817:49–66

    CAS  Google Scholar 

  54. Zhang M, El Rassi Z (2006) J Proteome Res 5:2001–2008

    CAS  Google Scholar 

  55. Kulka S, Quintás G, Lendl B (2006) Analyst 131:739–744

    CAS  Google Scholar 

  56. Kang D, Moon MH (2006) Anal Chem 78:5789–5798

    CAS  Google Scholar 

  57. Wei J, Gu X, Wang Y, Wu Y, Yan C (2011) Electrophoresis 32:230–237

    CAS  Google Scholar 

  58. Mohan D, Lee CS (2002) Electrophoresis 23:3160–3167

    CAS  Google Scholar 

  59. Mohan D., Paša-Tolić L, Masselon CD, Tolić N, Bogdanov B, Hixson KK, Smith RD, Lee CS (2003) Anal Chem 75:4432–4440

    CAS  Google Scholar 

  60. Yang C, Zhang L, Liu H, Zhang W, Zhang Y (2003) J Chromatogr A 1018:97–103

    CAS  Google Scholar 

  61. Yang C, Liu H, Yang Q, Zhang L, Zhang W, Zhang Y (2003) Anal Chem 2003:215–218

    Google Scholar 

  62. Liu H, Yang C, Yang Q, Zhang W, Zhang Y (2005) J Chromatogr B 817:119–126

    CAS  Google Scholar 

  63. Liu H, Zhang L, Zhu G, Zhang W, Zhang Y (2004) Anal Chem 76:6506–6512

    CAS  Google Scholar 

  64. Wu Z-Y, Fang F, He Y-Q, Li T-T, Li J-J, Tian L (2012) Anal Chem 84:7085–7091

    CAS  Google Scholar 

  65. Wang T, Ma J, Wu S, Sun L, Yuan H, Zhang L, Liang Z, Zhang Y (2011) J Chromatogr B 879:804–810

    CAS  Google Scholar 

  66. Zhang Z-X, Zhang X-W, Zhang S-S (2009) Anal Biochem 387:171–177

    CAS  Google Scholar 

  67. Sahlin E (2007) J Chromatogr A 1154:454–459

    CAS  Google Scholar 

  68. Lopes FS, Junior OA, Gutz IG (2010) Electrochem Commun 12:1387–1390

    CAS  Google Scholar 

  69. Lopes FS, Coelho LHG, Gutz IGR (2011) Electrophoresis 32:939–946

    CAS  Google Scholar 

  70. Tong W, Link A, Eng JK, Yates JR (1999) Anal Chem 71:2270–2278

    CAS  Google Scholar 

  71. Tempels F, Wiese G, Underberg WJ, Somsen GW, de Jong GJ (2006) J Chromatogr B 839:30–35

    CAS  Google Scholar 

  72. Puig P, Tempels F, Borrull F, Calull M, Aguilar C, Somsen GW, de Jong GJ (2007) J Chromatogr B 856:365–370

    CAS  Google Scholar 

  73. Jooß K, Sommer J, Bunz S-C, Neusüß C (2013) Electrophoresis 35:1236–1243

    Google Scholar 

  74. Tempels F, Underberg WJ, Somsen GW, deJong GJ (2008) Electrophoresis 29:108–128

    CAS  Google Scholar 

  75. Chen S, Lee ML (1998) Anal Chem 70:3777–3780

    CAS  Google Scholar 

  76. Figeys D, Gygi SP, McKinnon G, Aebersold R (1998) Anal Chem 70:3728–3734

    CAS  Google Scholar 

  77. Zhang B, Liu H, Karger B, Foret F (1999) Anal Chem 71:3258–3264

    CAS  Google Scholar 

  78. Zhang B, Foret F, Karger BL (2000) Anal Chem 72:1015–1022

    CAS  Google Scholar 

  79. Li J, Thibault P, Bings NH, Skinner CD, Wang C, Colyer C, Harrison J (1999) Anal Chem 71:3036–3045

    CAS  Google Scholar 

  80. Madou MJ (2002) Fundamentals of microfabrication: the science of miniaturization. CRC Press, Boca Raton

    Google Scholar 

  81. Chiou C-H, Lee G-B, Hsu H-T, Chen P-W, Liao P-C (2002) Sens Actuator B-Chem 86:280–286

    CAS  Google Scholar 

  82. Samskog J, Bergström SK, Jönsson M, Klett O, Wetterhall M, Markides KE (2003) Electrophoresis 24:1723–1729

    CAS  Google Scholar 

  83. Bergström SK, Dahlin AP, Ramström M, Andersson M, Markides KE, Bergquist J (2006) Analyst 131:791–798

    Google Scholar 

  84. Bergström SK, Samskog J, Markides KE (2003) Anal Chem 75:5461–5467

    Google Scholar 

  85. Yang X, Zhang X, Li A, Zhu S, Huang Y (2003) Electrophoresis 24:1451–1457

    CAS  Google Scholar 

  86. Zhang J, Hu H, Gao M, Yang P, Zhang X (2004) Electrophoresis 25:2374–2383

    CAS  Google Scholar 

  87. Mellors JS, Black WA, Chambers AG, Starkey JA, Lacher NA, Ramsey JM (2013) Anal Chem 85:4100–4106

    CAS  Google Scholar 

  88. Skinner CD (2010) Analyst 135:358–367

    CAS  Google Scholar 

  89. Lu JJ, Wang S, Li G, Wang W, Pu Q, Liu S (2012) Anal Chem 84:7001–7007

    CAS  Google Scholar 

  90. Kler PA, Posch TN, Pattky M, Tiggelaar RM, Huhn C (2013) J Chromatogr A 1297:204–212

    CAS  Google Scholar 

  91. Tiggelaar R, Benito-Lopez F, Hermes D, Rathgen H, Egberink R, Mugele F, Reinhoudt D, van den Berg A, Verboom W, Gardeniers H (2007) Chem Eng J 131:163–170

    CAS  Google Scholar 

  92. Lee W-H, Her G-R (2009) Electrophoresis 30:1675–1683

    CAS  Google Scholar 

  93. Lee W-H, Wang C-W, Her G-R (2011) Rapid Commun Mass Spectrom 25:2124–2130

    CAS  Google Scholar 

  94. Manz A, Graber N, Widmer H (1990) Sens Actuator B 1:244– 248

    CAS  Google Scholar 

  95. Kaniansky D, Masar M, Bodor R, žúborová M, Ölvecká E, Jöhnck M, Stanislawski B (2003) Electrophoresis 24:2208– 2227

    CAS  Google Scholar 

  96. Gao D, Liu H, Jiang Y, Lin J-M (2013) Lab Chip 13:3309–3322

    CAS  Google Scholar 

  97. Guihen E (2014) Electrophoresis 35:138–146

    CAS  Google Scholar 

  98. Becker H, Lowack K, Manz A (1998) J Micromech Microeng 8:24–28

    CAS  Google Scholar 

  99. Chen X, Wu H, Mao C, Whitesides GM (2002) Anal Chem 74:1772–1778

    CAS  Google Scholar 

  100. Emrich CA, Medintz IL, Chu WK, Mathies RA (2007) Anal Chem 79:7360–7366

    CAS  Google Scholar 

  101. Herr AE, Molho JI, Drouvalakis KA, Mikkelsen JC, Utz PJ, Santiago JG, Kenny TW (2003) Anal Chem 75:1180–1187

    CAS  Google Scholar 

  102. Kaniansky D, Masár M, Bielčiková J, Iványi F, Eisenbeiss F, Stanislawski B, Grass B, Neyer A, Jöhnck M (2000) Anal Chem 72:3596–3604

    CAS  Google Scholar 

  103. Smejkal P, Bottenus D, Breadmore MC, Guijt RM, Ivory CF, Foret F, Macka M (2013) Electrophoresis 34:1493–1509

    CAS  Google Scholar 

  104. Rocklin RD, Ramsey RS, Ramsey JM (2000) Anal Chem 72:5244–5249

    CAS  Google Scholar 

  105. Kutter JP, Jacobson SC, Matsubara N, Ramsey JM (1998) Anal Chem 70:3291–3297

    CAS  Google Scholar 

  106. Wang Y-C, Choi MH, Han J (2004) Anal Chem 76:4426– 4431

    CAS  Google Scholar 

  107. Végvári Á, Hjertén S (2002) Electrophoresis 23:3479–3486

    Google Scholar 

  108. Mao Y, Zhang X (2003) Electrophoresis 24:3289–3295

    CAS  Google Scholar 

  109. Mao Y, Li Y, Zhang X (2006) Proteomics 6:420–426

    CAS  Google Scholar 

  110. Liu Z, Pawliszyn J (2003) Anal Chem 75:4887–4894

    CAS  Google Scholar 

  111. Kubáň P, Hauser PC (2004) Electroanal 16:2009–2021

    Google Scholar 

  112. Anouti S, Vandenabeele-Trambouze O, Cottet H (2010) Electrophoresis 31:1029–1035

    CAS  Google Scholar 

  113. Kobrin E-G, Lees H, Fomitšenko M, Kubáň P, Kaljurand M (2014) Electrophoresis 35(8):1165–1172

  114. Verheij E, Tjaden U, Niessen W, van der Greef J (1991) J Chromatogr A 554:339–349

    CAS  Google Scholar 

  115. Zhong X, Zhang Z, Jiang S, Li L (2013) Electrophoresis 35:1214–1225

    Google Scholar 

  116. Klepárník K (2013) Electrophoresis 34:70–85

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Excellence Initiative, a jointly funded program of the German federal and state governments, organized by the German Research Foundation (DFG), by the Initiative and Networking Fund of the Helmholtz Association within the framework of the Helmholtz Young Investigators Group Program in Germany and the National Council for Research in Science and Technology (CONICET) in Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo A. Kler.

Additional information

Published in the topical collection Multidimensional Chromatography with guest editors Torsten C. Schmidt, Oliver J. Schmitz, and Thorsten Teutenberg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kler, P.A., Sydes, D. & Huhn, C. Column–coupling strategies for multidimensional electrophoretic separation techniques. Anal Bioanal Chem 407, 119–138 (2015). https://doi.org/10.1007/s00216-014-8099-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-8099-7

Keywords

Navigation