Skip to main content
Log in

Characterization of poly(2-vinylpyridine)-block-poly(methyl methacrylate) copolymers and blends of their homopolymers by liquid chromatography at critical conditions

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Poly(2-vinylpyridine)s (P2VPs) are important polymers with extensive applications in modern day material science. P2VP is an exceptional case for liquid chromatography because of certain polar interactions with most of the stationary phases. In the present study, we established the critical adsorption point (CAP) of P2VP for the first time. The effectiveness of the method is demonstrated by analyses of blends and block copolymers of P2VP and PMMA. The CAP of PMMA is established for determination of molar mass of P2VP component of above mentioned blends and block copolymers. The methods successfully demonstrate the separation of both types of homopolymers from the rest of the samples in conjunction with the determination of molar mass distribution of noncritical block or component.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Higgins JS, Tambasco M, Lipson JEG (2005) Polymer blends; stretching what we can learn through the combination of experiment and theory. Prog Polym Sci 30(8/9):832–843

    Article  CAS  Google Scholar 

  2. Yu L, Dean K, Li L (2006) Polymer blends and composites from renewable resources. Prog Polym Sci 31(6):576–602

    Article  CAS  Google Scholar 

  3. Alexandridis P, Lindman B (eds) (2000) Amphiphilic block copolymers, self assembly and applications. Elsevier, Amsterdam

    Google Scholar 

  4. Hadjichristidis N, Pispas S, Floudas G (2003) Block copolymers: synthetic strategies, physical properties, and applications. Wiley, Hoboken

    Google Scholar 

  5. Hamley IW (2005) Block copolymers in solution: fundamentals and applications. Wiley, Chichester

    Book  Google Scholar 

  6. Darling SB (2007) Directing the self-assembly of block copolymers. Prog Polym Sci 32(10):1152–1204

    Article  CAS  Google Scholar 

  7. Thode CJ, Cook PL, Jiang Y, Onses MS, Ji S, Himpsel FJ, Nealey PF (2013) In situ metallization of patterned polymer brushes created by molecular transfer print and fill. Nanotechnology. doi:10.1088/0957-4484/24/15/155602

  8. Kodiyath R, Choi I, Patterson B, Tsitsilianis C, Tsukruk VV (2013) Interfacial behavior of pH responsive ampholytic heteroarm star block terpolymers. Polymer 54(3):1150–1159

    Article  CAS  Google Scholar 

  9. Hahn J, Filiz V, Rangou S, Lademann B, Buhr K, Clodt JI, Jung A, Abetz C, Abetz V (2013) PtBS-b-P4VP and PTMSS-b-P4VP isoporous integral-asymmetric membranes with high thermal and chemical stability. Macromol Mater Eng 298(12):1315–1321

    Article  CAS  Google Scholar 

  10. Matsushita Y, Hayashida K, Takano A (2010) Jewelry box of morphologies with mesoscopic length scales – ABC star-shaped terpolymers. Macromol Rapid Commun 31(18):1579–1587

    Article  CAS  Google Scholar 

  11. Li J, Khan IM (1993) Highly conductive solid polymer electrolytes prepared by blending high-molecular-weight poly(ethylene oxide), poly(2-vinylpyridine or 4- vinylpyridine), and lithium perchlorate. Macromolecules 26(17):4544–4550

    Article  CAS  Google Scholar 

  12. Araneda E, Leiva A, Gargallo L, Hadjichristidis N, Mondragon I, Radic D (2011) Crystallization behavior of PEO in blends of poly(ethylene oxide)/poly(2-vinyl pyridine)-b-(ethylene oxide) block copolymer. Polym Eng Sci 52(5):1128–1136

    Article  Google Scholar 

  13. Posel Z, Limpouchová Z, Šindelka K, Lísal M, Procházka K (2014) Dissipative particle dynamics study of the ph-dependent behavior of poly(2-vinylpyridine)-block- poly(ethylene oxide) diblock copolymer in aqueous buffers. Macromolecules 47(7):2503–2514

    Article  CAS  Google Scholar 

  14. Jung A, Filiz V, Rangou S, Buhr K, Merten P, Hahn J, Clodt J, Abetz C, Abetz V (2013) Formation of integral asymmetric membranes of AB diblock and ABC triblock copolymers by phase inversion. Macromol Rapid Commun 34(7):610–615

    Article  CAS  Google Scholar 

  15. Fan H, Jin Z (2014) Freezing polystyrene-b-poly(2-vinylpyridine) micelle nanoparticles with different nanostructures and sizes. Soft Matter 10(16):2848–2855

    Article  CAS  Google Scholar 

  16. Fu X, Song L, Liu J, Li X, Zhang X, Jia Y (2012) One-step approach for the preparation of organic-inorganic janus-like particles by alkalization of polystyrene- block-poly(2-vinylpyridine)/FeCl3 complex micelles. Macromol Chem Phys 213(16):1663–1668

    Article  CAS  Google Scholar 

  17. McGrath N, Patil AJ, Watson SMD, Horrocks BR, Faul CFJ, Houlton A, Winnik MA, Mann S, Manners I (2013) Conductive, monodisperse polyaniline nanofibers of controlled length using well-defined cylindrical block copolymer micelles as templates. Chem-Euro J 19(39):13030–13039

    Article  CAS  Google Scholar 

  18. Tress M, Mapesa EU, Kossack W, Kipnusu WK, Reiche M, Kremer F (2013) Glassy dynamics in condensed isolated polymer chains. Science 341(6152):1371–1374

    Article  CAS  Google Scholar 

  19. Tsitsilianis C, Stavrouli N, Bocharova V, Angelopoulos S, Kiriy A, Katsampas I, Stamm M (2008) Stimuli responsive associative polyampholytes based on ABCBA pentablock terpolymer architecture. Polymer 49(13/14):2996–3006

    Article  CAS  Google Scholar 

  20. Rudolph T, Barthel MJ, Kretschmer F, Mansfeld U, Hoeppener S, Hager MD, Schubert US, Schacher FH (2014) Poly(2-vinyl pyridine)-block-poly(ethylene oxide) featuring a furan group at the block junction—synthesis and functionalization. Macromol Rapid Commun 35(9):916–921

    Article  CAS  Google Scholar 

  21. Butsele KV, Stoffelbach F, Jérôme R, Jérôme C (2006) Synthesis of novel amphiphilic and pH-sensitive ABC Miktoarm star terpolymers. Macromolecules 39(17):5652–5656

    Article  Google Scholar 

  22. Matsuo Y, Oie T, Goseki R, Ishizone T, Sugiyama K, Hirao A (2013) Precise synthesis of new triblock co- and terpolymers by a methodology combining living anionic polymers with a specially designed linking reaction. Macromol Symp 323(1):26–36

    Article  CAS  Google Scholar 

  23. Fragouli PG, Iatrou H, Hadjichristidis N, Sakurai T, Hirao A (2006) Synthesis and characterization of model 3-miktoarm star copolymers of poly(dimethylsiloxane) and poly(2-vinylpyridine). J Polym Sci A Polym Chem 44(1):614–619

    Article  CAS  Google Scholar 

  24. Su M, Huang H, Ma X, Wang Q, Su Z (2013) Poly(2-vinylpyridine)-block -poly(ϵ- caprolactone) single crystals in micellar solution. Macromol Rapid Commun 34(13):1067–1071

    Article  CAS  Google Scholar 

  25. Dockendorff J, Gauthier M (2014) Synthesis of arborescent polystyrene-g-[poly(2- vinylpyridine)-b-polystyrene] core–shell–corona copolymers. J Polym Sci A Polym Chem 52(8):1075–1085

    Article  CAS  Google Scholar 

  26. Park S, Chang T (2006) Characterization of poly(2-vinylpyridine) by temperature gradient interaction chromatography. Macromolecules 39(9):3466–3468

    Article  CAS  Google Scholar 

  27. Cho D, Noro A, Takano A, Matsushita Y (2005) TGIC separation of PS-b-P2VP diblock and P2VP-b-PS-b-P2VP triblock copolymers according to chemical composition. Macromolecules 38(7):3033–3036

    Article  CAS  Google Scholar 

  28. Baumgaertel A, Altuntaş E, Schubert US (2012) Recent developments in the detailed characterization of polymers by multidimensional chromatography. J Chromatogr A 1240:1–20

    Article  CAS  Google Scholar 

  29. Macko T, Hunkeler D (2003) Liquid chromatography under critical and limiting conditions: a survey of experimental systems for synthetic polymers. Adv Polym Sci 163:6–136

    Google Scholar 

  30. Malik MI, Pasch H (2014) Novel developments in the multidimensional characterization of segmented copolymers. Prog Polym Sci 39(1):87–123

    Article  CAS  Google Scholar 

  31. Radke W, Rode K, Gorshkov AV, Biela T (2005) Chromatographic behavior of fuctionalized star-shaped poly(lactide)s under critical conditions of adsorption. Comparison of theory and experiment. Polymer 46(15):5456–5465

    Article  CAS  Google Scholar 

  32. Sinha P, Hiller W, Pasch H (2014) HPLC-1H-NMR characterization of polystyrene- block-polyisoprene copolymers: LCCC-1H-NMR using a single mobile phase. Macromol Symp 337(1):44–50

    Article  CAS  Google Scholar 

  33. Mekap D, Macko T, Brüll R, Cong R, deGroot AW, Parrott A, Cools PJCH, Yau W (2013) Liquid chromatography at critical conditions of polyethylene. Polymer 54(21):5518–5524

    Article  CAS  Google Scholar 

  34. Smigovec Ljubic T, Pahovnik D, Zigon M, Zagar E (2012) Separation of poly(styrene- block-t-butyl methacrylate) copolymers by various liquid chromatography techniques. Sci World J. doi:10.1100/2012/932609

  35. Sinha P, Hiller W, Bellas V, Pasch H (2012) Analysis of polystyrene-b-polyisoprene copolymers by coupling of liquid chromatography at critical conditions to NMR at critical conditions of polystyrene and polyisoprene. J Sep Sci 35(14):1731–1740

    Article  CAS  Google Scholar 

  36. Sinha P, Hiller W, Pasch H (2010) Characterisation of blends of polyisoprene and polystyrene by on-line hyphenation of HPLC and 1H-NMR: LC-CC-NMR at critical conditions of both homopolymers. J Sep Sci 33(22):3494–3500

    Article  CAS  Google Scholar 

  37. Malik MI, Trathnigg B, Kappe CO (2009) Amphiphilic polymers based on higher alkylene oxides. Synthesis and characterization by different chromatographic techniques. J Chromatogr A 1216(7):1167–1173

    Article  CAS  Google Scholar 

  38. Malik MI, Sinha P, Bayley GM, Mallon PE, Pasch H (2011) Characterization of polydimethylsiloxane-block-polystyrene (PDMS-b-PS) Copolymers by liquid chromatography at critical conditions. Macromol Chem Phys 212(12):1221–1228

    Article  CAS  Google Scholar 

  39. Malik MI, Harding G, Pasch H (2012) Two-dimensional liquid chromatography of PDMS–PS block copolymers. Anal Bioanal Chem 403(2):601–611

    Article  CAS  Google Scholar 

  40. Malik MI, Harding GW, Grabowsky ME, Pasch H (2012) Two-dimensional liquid chomatography of polystyrene–polyethylene oxide block copolymers. J Chromatogr A 1244:77–87

    Article  CAS  Google Scholar 

  41. Baran K, Laugier S, Cramail H (2001) Fractionation of functional polystyrenes, poly(ethylene oxide)s and poly(styrene)-b-poly(ethylene oxide) by liquid chromatography at the exclusion–adsorption transition point. J Chromatogr B 753(1):139–149

    Article  CAS  Google Scholar 

  42. Hulst MV, Horst AVD, Kok WT, Schoenmakers PJ (2010) Comprehensive 2-D chromatography of random and block methacrylate copolymers. J Sep Sci 33(10):1414–1420

    Article  Google Scholar 

  43. Macko T, Hunkeler D, Berek D (2002) Liquid chromatography of synthetic polymers under critical conditions. The case of single eluents and the role of ϑ conditions. Macromolecules 35(5):1797–1804

    Article  CAS  Google Scholar 

  44. Berek D, Tarbajovska J (2002) Evaluation of high-performance liquid chromatography column retentivity using macromolecular probes*1: II. Silanophilic interactivity traced by highly polar polymers. J Chromatogr A 976(1/2):27–37

    Article  CAS  Google Scholar 

  45. Scholten AB, Claessens HA, de Haan JW, Cramers CA (1997) Chromatographic activity of residual silanols of alkylsilane derivatized silica surfaces. J Chromatogr A 759(1/2):37–46

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Higher Education Commission (HEC) of Pakistan is acknowledged for the startup research grant number PM-IPFP/HRD/HEC/2012/2717.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Imran Malik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malik, M.I., Mahboob, T. & Ahmed, S. Characterization of poly(2-vinylpyridine)-block-poly(methyl methacrylate) copolymers and blends of their homopolymers by liquid chromatography at critical conditions. Anal Bioanal Chem 406, 6311–6317 (2014). https://doi.org/10.1007/s00216-014-8075-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-8075-2

Keywords

Navigation