Skip to main content
Log in

Electroosmotic perfusion of tissue: sampling the extracellular space and quantitative assessment of membrane-bound enzyme activity in organotypic hippocampal slice cultures

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This review covers recent advances in sampling fluid from the extracellular space of brain tissue by electroosmosis (EO). Two techniques, EO sampling with a single fused-silica capillary and EO push–pull perfusion, have been developed. These tools were used to investigate the function of membrane-bound enzymes with outward-facing active sites, or ectoenzymes, in modulating the activity of the neuropeptides leu-enkephalin and galanin in organotypic-hippocampal-slice cultures (OHSCs). In addition, the approach was used to determine the endogenous concentration of a thiol, cysteamine, in OHSCs. We have also investigated the degradation of coenzyme A in the extracellular space. The approach provides information on ectoenzyme activity, including Michaelis constants, in tissue, which, as far as we are aware, has not been done before. On the basis of computational evidence, EO push–pull perfusion can distinguish ectoenzyme activity with a ~100 μm spatial resolution, which is important for studies of enzyme kinetics in adjacent regions of the rat hippocampus.

Schematics for the one-probe electroosmotic sampling (EO sampling, left) and two-probe electroosmotic push-pull perfusion techniques (EOPPP, right). An external electric field drives fluid flow in the direction indicated by the arrows. HBSS - Hanks Balanced Salt Solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. MacIntosh FC, Oborin PE (1953) Release of acetylcholine from intact cerebral cortex. Proc XIX Int Cong Physiol 580–581

  2. Gaddum JH (1961) Push-pull cannulae. J Physiol Lond 155:1P–2P

    Google Scholar 

  3. Delgado JMR, Simhadri P, Apelbaum J (1962) Chronic implantation of chemitrodes in the monkey brain. Proc XXII Int Union Physiol Sci 2:1090

    Google Scholar 

  4. Delgado JMR, DeFeudis FV, Roth RH, Ryugo DK, Mitruka BM (1972) Dialytrode for long term intracerebral perfusion in awake monkeys. Arch Int Pharmacodyn 198:9–21

    CAS  Google Scholar 

  5. Di Chiara G (1990) In-vivo brain dialysis of neurotransmitters. Trends Pharmacol Sci 11(3):116–121

    Google Scholar 

  6. Redgrave P (1977) A modified push-pull system for the localised perfusion of brain tissue. Pharmacol Biochem Behav 6(4):471–474

    CAS  Google Scholar 

  7. Dluzen DE, Ramirez VD (1986) A miniaturized push-pull cannula for use in conscious, unrestrained animals. Pharmacol Biochem Behav 24(1):147–150

    CAS  Google Scholar 

  8. Zhang X, Myers RD, Wooles WR (1990) New triple microbore cannula system for push-pull perfusion of brain nuclei of the rat. J Neurosci Methods 32(2):93–104

    CAS  Google Scholar 

  9. Zhang X, Wulfert E, Hanin I (1992) Development of a sensitive and inexpensive micropush—pull technique for the continuous analysis of brain neurotransmitters and metabolites in vivo. J Neurosci Methods 42(1–2):139–147

    CAS  Google Scholar 

  10. Myers RD, Adell A, Lankford MF (1998) Simultaneous comparison of cerebral dialysis and push–pull perfusion in the brain of rats: a critical review. Neurosci Biobehav Rev 22(3):371–387

    CAS  Google Scholar 

  11. Ungerstedt U (1984) Measurement of neurotransmitter release by intercranial dialysis. In: Marsden CA (ed) Measurement of neurotransmitter release in vivo. Wiley, New York, pp 81–105

    Google Scholar 

  12. Westerink BHC (1992) Monitoring molecules in the conscious brain by microdialysis. TrAC Trends Anal Chem 11(5):182–186

    Google Scholar 

  13. Bungay PM, Sumbria RK, Bickel U (2011) Unifying the mathematical modeling of in vivo and in vitro microdialysis. J Pharm Biomed Anal 55(1):54–63

    CAS  Google Scholar 

  14. Duo J, Fletcher H, Stenken JA (2006) Natural and synthetic affinity agents as microdialysis sampling mass transport enhancers: Current progress and future perspectives. Biosens Bioelectron 22(3):449–457

    CAS  Google Scholar 

  15. Wang Y, Stenken JA (2009) Affinity-based microdialysis sampling using heparin for in vitro collection of human cytokines. Anal Chim Acta 651(1):105–111

    CAS  Google Scholar 

  16. Fletcher HJ, Stenken JA (2008) An in vitro comparison of microdialysis relative recovery of Met- and Leu-enkephalin using cyclodextrins and antibodies as affinity agents. Anal Chim Acta 620(1–2):170–175

    CAS  Google Scholar 

  17. Trickler WJ, Miller DW (2003) Use of osmotic agents in microdialysis studies to improve the recovery of macromolecules. J Pharm Sci 92(7):1419–1427

    CAS  Google Scholar 

  18. Takeda S, Sato N, Ikimura K, Nishino H, Rakugi H, Morishita R (2011) Novel microdialysis method to assess neuropeptides and large molecules in free-moving mouse. Neuroscience 186:110–119

    CAS  Google Scholar 

  19. Wang M, Roman GT, Schultz K, Jennings C, Kennedy RT (2008) Improved Temporal Resolution for in Vivo Microdialysis by Using Segmented Flow. Anal Chem 80(14):5607–5615

    CAS  Google Scholar 

  20. Kottegoda S, Shaik I, Shippy SA (2002) Demonstration of low flow push–pull perfusion. J Neurosci Methods 121(1):93–101

    Google Scholar 

  21. Kottegoda S, Pulido JS, Thongkhao-on K, Shippy SA (2007) Demonstration and use of nanoliter sampling of in vivo rat vitreous and vitroretinal interface. Mol Vis 13:2073–2082

    CAS  Google Scholar 

  22. Thongkhao-on K, Wirtshafter D, Shippy SA (2008) Feeding specific glutamate surge in the rat lateral hypothalamus revealed by low-flow push–pull perfusion. Pharmacol Biochem Behav 89(4):591–597

    CAS  Google Scholar 

  23. Patterson EE II, Pritchett JS, Shippy SA (2009) High temporal resolution coupling of low-flow push-pull perfusion to capillary electrophoresis for ascorbate analysis at the rat vitreoretinal interface. Analyst (Cambridge, United Kingdom) 134(2):401–406

    CAS  Google Scholar 

  24. Slaney TR, Nie J, Hershey ND, Thwar PK, Linderman J, Burns MA, Kennedy RT (2011) Push–Pull Perfusion Sampling with Segmented Flow for High Temporal and Spatial Resolution in Vivo Chemical Monitoring. Anal Chem 83(13):5207–5213

    CAS  Google Scholar 

  25. Kennedy RT, Thompson JE, Vickroy TW (2002) In vivo monitoring of amino acids by direct sampling of brain extracellular fluid at ultralow flow rates and capillary electrophoresis. J Neurosci Methods 114(1):39–49

    CAS  Google Scholar 

  26. Malavasi F, Deaglio S, Zaccarello G, Horenstein AL, Chillemi A, Audrito V, Serra S, Gandione M, Zitella A, Tizzani A (2010) The hidden life of NAD+-consuming ectoenzymes in the endocrine system. J Mol Endocrinol 45(3,4):183–191

    CAS  Google Scholar 

  27. Zimmermann H (2006) Ectonucleotidases in the nervous system. Novartis Foundation Symposium 276 (Purinergic Signalling in Neuron-Glia Interactions) 113–130

  28. Bogan KL, Brenner C (2010) 5'-Nucleotidases and their new roles in NAD + and phosphate metabolism. New J Chem 34(5):845–853

    CAS  Google Scholar 

  29. Burnstock G (2007) Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev 87:659–797

    CAS  Google Scholar 

  30. Burnstock G (2009) Purinergic receptors and pain. Curr Pharm Des 15:1717–1735

    CAS  Google Scholar 

  31. Fausther M, Gonzales E, Dranoff JA (2012) Role of purinergic P2X receptors in the control of liver homeostasis. Wiley Interdiscip Rev: Membr Transp Signal 1(3):341–348

    CAS  Google Scholar 

  32. Meyer-Fernandes JR, Cosentino-Gomes D, Vieira DP, Lopes AH (2010) Ecto-nucleoside triphosphate diphosphohydrolase activities in trypanosomatids: possible roles in infection, virulence and purine recycling. Open Parasitol J 4:116–119

    CAS  Google Scholar 

  33. Mitchell CH, Reigada D (2008) Purinergic signaling in the subretinal space: a role in the communication between the retina and the RPE. Purinergic Signal 4(2):101–107

    CAS  Google Scholar 

  34. Yegutkin GG (2008) Nucleotide- and nucleoside-converting ectoenzymes: Important modulators of purinergic signalling cascade. Biochim Biophys Acta, Mol Cell Res 1783(5):673–694

    CAS  Google Scholar 

  35. Kukulski F, Levesque SA, Sevigny J (2011) Impact of ectoenzymes on P2 and P1 receptor signaling. Adv Pharmacol 61:263–299

  36. Deaglio S, Aydin S, Vaisitti T, Bergui L, Malavasi F (2008) CD38 at the junction between prognostic marker and therapeutic target. Trends Mol Med 14(5):210–218

    CAS  Google Scholar 

  37. Funaro A, Ortolan E, Bovino P, Lo BN, Nacci G, Parrotta R, Ferrero E, Malavasi F (2009) Ectoenzymes and innate immunity: the role of human CD157 in leukocyte trafficking. Front Biosci, Landmark Ed 14(3):929–943

    CAS  Google Scholar 

  38. Stein LR, S-i I (2012) The dynamic regulation of NAD metabolism in mitochondria. Trends Endocrinol Metab 23(9):420–428

    CAS  Google Scholar 

  39. Vaisitti T, Audrito V, Serra S, Bologna C, Brusa D, Malavasi F, Deaglio S (2011) NAD + -metabolizing ecto-enzymes shape tumor-host interactions: The chronic lymphocytic leukemia model. FEBS Lett 585(11):1514–1520

    CAS  Google Scholar 

  40. Mentlein R (2004) Cell-surface peptidases. Int Rev Cytol 235:165–213

    CAS  Google Scholar 

  41. Antczak C, De Meester I, Bauvois B (2001) Ectopeptidases in pathophysiology. BioEssays 23(3):251–260

    CAS  Google Scholar 

  42. Hooper NM, Kenny AJ, Turner AJ (1985) The metabolism of neuropeptides. Neurokinin A (substance K) is a substrate for endopeptidase-24.11 but not for peptidyl dipeptidase A (angiotensin-converting enzyme). Biochem J 231(2):357–361

    CAS  Google Scholar 

  43. Lee R, Kermani P, Teng KK, Hempstead BL (2001) Regulation of cell survival by secreted proneurotrophins. Science 294(5548):1945–1948

    CAS  Google Scholar 

  44. Karlsson K, Sharma H, Nyberg F (2006) Chromatographic characterization of substance P endopeptidase in the rat brain reveals affected enzyme activity following heat stress. Biomed Chromatogr 20(1):77–82

    CAS  Google Scholar 

  45. Hernandez J, Segarra AB, Ramirez M, Banegas I, de Gasparo M, Alba F, Vives F, Duran R, Prieto I (2009) Stress Influences Brain Enkephalinase, Oxytocinase and Angiotensinase Activities: A New Hypothesis. Neuropsychobiology 59(3):184–189

    CAS  Google Scholar 

  46. Dos Santos Medeiros M, Turner AJ (1996) Metabolism and functions of neuropeptide Y. Neurochem Res 21(9):1125–1132

    CAS  Google Scholar 

  47. Fadini GP, Avogaro A (2013) Dipeptidyl peptidase-4 inhibition and vascular repair by mobilization of endogenous stem cells in diabetes and beyond. Atherosclerosis (Amsterdam, Neth) 229(1):23–29

    CAS  Google Scholar 

  48. Furman BL (2012) The development of Byetta (exenatide) from the venom of the Gila monster as an anti-diabetic agent. Toxicon 59(4):464–471

    CAS  Google Scholar 

  49. Danziger R (2008) Aminopeptidase N in arterial hypertension. Heart Fail Rev 13(3):293–298

    CAS  Google Scholar 

  50. Miller BC, Ackroyd A, Hersh LB, Cottam GL (1994) Methionine enkephalin metabolism by murine macrophage ectopeptidase(s). Regul Pept 50(1):87–98

    CAS  Google Scholar 

  51. Roques BP, Fournie-Zaluski M-C, Wurm M (2012) Inhibiting the breakdown of endogenous opioids and cannabinoids to alleviate pain. Nat Rev Drug Discovery 11(4):292–310

    CAS  Google Scholar 

  52. Toth F, Toth G, Benyhe S, Rougeot C, Wollemann M (2012) Opiorphin highly improves the specific binding and affinity of MERF and MEGY to rat brain opioid receptors. Regul Pept 178(1–3):71–75

    CAS  Google Scholar 

  53. Turner AJ, Nalivaeva NN (2013) Peptide degradation (neprilysin and other regulatory peptidases). In: Kastin A (ed) Handbook of Biologically Active Peptides. Elsevier Inc., 1757–1764

  54. Bauer C, Pardossi-Piquard R, Dunys J, Roy M, Checler F (2011) γ-Secretase-Mediated Regulation of Neprilysin: Influence of Cell Density and Aging and Modulation by Imatinib. J Alzheimers Dis 27(3):511–520

    CAS  Google Scholar 

  55. Malfroy B, Schofield PR, Kuang WJ, Seeburg PH, Mason AJ, Henzel WJ (1987) Molecular cloning and amino acid sequence of rat enkephalinase. Biochem Biophys Res Commun 144(1):59–66

    CAS  Google Scholar 

  56. Thielitz A, Ansorge S, Bank U, Tager M, Wrenger S, Gollnick H, Reinhold D (2008) The ectopeptidases dipeptidyl peptidase IV (DP IV) and aminopeptidase N (APN) and their related enzymes as possible targets in the treatment of skin diseases. Front Biosci 13:2364–2375

    CAS  Google Scholar 

  57. Carl-McGrath S, Lendeckel U, Ebert M, Roecken C (2006) Ectopeptidases in tumour biology: a review. Histol Histopathol 21(10,11 and 12):1339–1353

    CAS  Google Scholar 

  58. Rashid M, Wangler NJ, Yang L, Shah K, Arumugam TV, Abbruscato TJ, Karamyan VT (2014) Functional up-regulation of endopeptidase neurolysin during post-acute and early recovery phases of experimental stroke in mouse brain. J Neurochem 129(1):179–189

    CAS  Google Scholar 

  59. Vincent B, Beaudet A, Dauch P, Vincent J-P, Checler F (1996) Distinct Properties of Neuronal and Astrocytic Endopeptidase 3.4.24.16: A Study on Differentiation, Subcellular Distribution, and Secretion Processes. J Neurosci 16(16):5049–5059

    CAS  Google Scholar 

  60. Wangler NJ, Santos KL, Schadock I, Hagen FK, Escher E, Bader M, Speth RC, Karamyan VT (2012) Identification of Membrane-bound Variant of Metalloendopeptidase Neurolysin (EC 3.4.24.16) as the Non-angiotensin Type 1 (Non-AT1), Non-AT2 Angiotensin Binding Site. J Biol Chem 287:114–122, Copyright (C) 2014 American Chemical Society (ACS). All Rights Reserved

    CAS  Google Scholar 

  61. Ahmad S, Okine L, Wood R, Aljian J, Vistica DT (1987) γ-glutamyl-transpeptidase (γ-GT) and maintenance of thiol pools in tumor cells resistant to alkylating agents. J Cell Physiol 131(2):240–246

    CAS  Google Scholar 

  62. Picher M, Boucher RC (2001) Metabolism of extracellular nucleotides in human airways by a multienzyme system. Drug Dev Res 52(1/2):66–75

    CAS  Google Scholar 

  63. Henz SL, Ribeiro CG, Rosa A, Chiarelli RA, Casali EA, Sarkis JJF (2006) Kinetic characterization of ATP diphosphohydrolase and 5'-nucleotidase activities in cells cultured from submandibular salivary glands of rats. Cell Biol Int 30(3):214–220

    CAS  Google Scholar 

  64. Lazarowski ER, Homolya L, Boucher RC, Harden TK (1997) Identification of an ecto-nucleoside diphosphokinase and its contribution to interconversion of P2 receptor agonists. J Biol Chem 272(33):20402–20407

    CAS  Google Scholar 

  65. Mawrin C, Wolke C, Haase D, Krueger S, Firsching R, Keilhoff G, Paulus W, Gutmann DH, Lal A, Lendeckel U (2010) Reduced activity of CD13/aminopeptidase N (APN) in aggressive meningiomas is associated with increased levels of SPARC. Brain Pathol 20:200–210, Copyright (C) 2013 American Chemical Society (ACS). All Rights Reserved

    CAS  Google Scholar 

  66. Vargas MA, Cisneros M, Joseph-Bravo P, Charli JL (2002) Thyrotropin-releasing hormone-induced down-regulation of pyroglutamyl aminopeptidase II activity involves L-type calcium channels and CaM kinase activities in cultures of adenohypophyseal cells. J Neuroendocrinol 14(3):184–193

    CAS  Google Scholar 

  67. Bauer K (1994) Purification and characterization of the thyrotropin-releasing hormone degrading enzyme. Eur J Biochem 224(2):387–396

    CAS  Google Scholar 

  68. De Gortari P, Vargas MA, Martinez A, Garcia-Vazquez AI, Uribe RM, Chavez-Gutierrez L, Magdaleno V, Boileau G, Charli J-L, Joseph-Bravo P (2007) Stage-specific modulation of neprilysin and aminopeptidase N in the limbic system during kindling progression. J Mol Neurosci 33(3):252–261

  69. Dringen R, Gutterer JM, Gros C, Hirrlinger J (2001) Aminopeptidase N mediates the utilization of the GSH precursor CysGly by cultured neurons. J Neurosci Res 66(5):1003–1008

    CAS  Google Scholar 

  70. Heuer H, Schafer MK, Bauer K (1998) The thyrotropin-releasing hormone-degrading ectoenzyme: the third element of the thyrotropin-releasing hormone-signaling system. Thyroid 8(10):915–920

    CAS  Google Scholar 

  71. Guy Y, Muha RJ, Sandberg M, Weber SG (2009) Determination of ζ-Potential and Tortuosity in Rat Organotypic Hippocampal Cultures from Electroosmotic Velocity Measurements under Feedback Control. Anal Chem 81(8):3001–3007

    CAS  Google Scholar 

  72. Guy Y, Sandberg M, Weber SG (2008) Determination of ζ-potential in rat organotypic hippocampal cultures. Biophys J 94:4561–4569, Copyright (C) 2014 American Chemical Society (ACS). All Rights Reserved

    CAS  Google Scholar 

  73. Rupert AE, Ou Y, Sandberg M, Weber SG (2013) Electroosmotic Push–Pull Perfusion: Description and Application to Qualitative Analysis of the Hydrolysis of Exogenous Galanin in Organotypic Hippocampal Slice Cultures. ACS Chem Neurosci 4(5):838–848

    CAS  Google Scholar 

  74. Kirby BJ, Hasselbrink EF Jr (2004) Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations. Electrophoresis 25(2):187–202

    CAS  Google Scholar 

  75. Nolkrantz K, Farre C, Brederlau A, Karlsson RID, Brennan C, Eriksson PS, Weber SG, Sandberg M, Orwar O (2001) Electroporation of Single Cells and Tissues with an Electrolyte-filled Capillary. Anal Chem 73(18):4469–4477

    CAS  Google Scholar 

  76. Kim JH, Astary GW, Kantorovich S, Mareci TH, Carney PR, Sarntinoranont M (2012) Voxelized computational model for convection-enhanced delivery in the rat ventral hippocampus: comparison with in vivo MR experimental studies. Ann Biomed Eng 40(9):2043–2058

    Google Scholar 

  77. Stoverud KH, Darcis M, Helmig R, Hassanizadeh SM (2012) Modeling Concentration Distribution and Deformation During Convection-Enhanced Drug Delivery into Brain Tissue. Transp Porous Media 92(1):119–143

    CAS  Google Scholar 

  78. Foley CP, Nishimura N, Neeves KB, Schaffer CB, Olbricht WL (2012) Real-time imaging of perivascular transport of nanoparticles during convection-enhanced delivery in the rat cortex. Ann Biomed Eng 40(2):292–303

    Google Scholar 

  79. Rathore AS, Horvath C (1998) Axial Nonuniformities and Flow in Columns for Capillary Electrochromatography. Anal Chem 70:3069–3077, Copyright (C) 2014 American Chemical Society (ACS). All Rights Reserved

    CAS  Google Scholar 

  80. Holopainen I (2005) Organotypic Hippocampal Slice Cultures: A Model System to Study Basic Cellular and Molecular Mechanisms of Neuronal Cell Death, Neuroprotection, and Synaptic Plasticity. Neurochem Res 30(12):1521–1528

    CAS  Google Scholar 

  81. Rom Poulsen F, Blaabjerg M, Montero M, Zimmer J (2005) Glutamate receptor antagonists and growth factors modulate dentate granule cell neurogenesis in organotypic, rat hippocampal slice cultures. Brain Res 1051(1–2):35–49

    Google Scholar 

  82. Ziemka-Nalecz M, Stanaszek L, Zalewska T (2013) Oxygen-glucose deprivation promotes gliogenesis and microglia activation in organotypic hippocampal slice culture: involvement of metalloproteinases. Acta Neurobiol Exp (Wars) 73(1):130–142

    Google Scholar 

  83. Lindroos MM, Soini SL, Kukko-Lukjanov T-K, Korpi ER, Lovinger D, Holopainen IE (2005) Maturation of cultured hippocampal slices results in increased excitability in granule cells. Int J Dev Neurosci 23(1):65–73

    CAS  Google Scholar 

  84. Lushnikova I, Skibo G, Muller D, Nikonenko I (2011) Excitatory synaptic activity is associated with a rapid structural plasticity of inhibitory synapses on hippocampal CA1 pyramidal cells. Neuropharmacology 60(5):757–764

    CAS  Google Scholar 

  85. Takahashi M, Liou SY, Kunihara M (1995) Ca(2+)- and Cl(-)-dependent, NMDA receptor-mediated neuronal death induced by depolarization in rat hippocampal organotypic cultures. Brain Res 675(1–2):249–256

    CAS  Google Scholar 

  86. Won R, Lee KH, Lee BH (2011) Coenzyme Q10 protects neurons against neurotoxicity in hippocampal slice culture. NeuroReport 22(14):721–726

    CAS  Google Scholar 

  87. Vornov JJ, Park J, Thomas AG (1998) Regional Vulnerability to Endogenous and Exogenous Oxidative Stress in Organotypic Hippocampal Culture. Exp Neurol 149(1):109–122

    CAS  Google Scholar 

  88. Butler TR, Self RL, Smith KJ, Sharrett-Field LJ, Berry JN, Littleton JM, Pauly JR, Mulholland PJ, Prendergast MA (2010) Selective vulnerability of hippocampal cornu ammonis 1 pyramidal cells to excitotoxic insult is associated with the expression of polyamine-sensitive N-methyl-d-asparate-type glutamate receptors. Neuroscience 165(2):525–534

    CAS  Google Scholar 

  89. Tasker RC, Coyle JT, Vornov JJ (1992) The regional vulnerability to hypoglycemia-induced neurotoxicity in organotypic hippocampal culture: protection by early tetrodotoxin or delayed MK-801. J Neurosci 12(11):4298–4308

    CAS  Google Scholar 

  90. Simão F, Zamin LL, Frozza R, Nassif M, Horn AP, Salbego CG (2009) Protective profile of oxcarbazepine against oxygen–glucose deprivation in organotypic hippocampal slice culture could involve PI3K cell signaling pathway. Neurol Res 31(10):1044–1048

    Google Scholar 

  91. Liu J, Solway K, Messing RO, Sharp FR (1998) Increased Neurogenesis in the Dentate Gyrus After Transient Global Ischemia in Gerbils. J Neurosci 18(19):7768–7778

    CAS  Google Scholar 

  92. Stoppini L, Buchs PA, Muller D (1991) A simple method for organotypic cultures of nervous tissue. J Neurosci Methods 37(2):173–182

    CAS  Google Scholar 

  93. Caroni P, De Paola V, Galimberti I, Gogolla N (2006) Preparation of organotypic hippocampal slice cultures for long-term live imaging. Nat Protoc 1:1165+

    Google Scholar 

  94. Xu H, Guy Y, Hamsher A, Shi G, Sandberg M, Weber SG (2010) Electroosmotic Sampling. Application to Determination of Ectopeptidase Activity in Organotypic Hippocampal Slice Cultures. Anal Chem 82(15):6377–6383

    CAS  Google Scholar 

  95. Wisner A, Dufour E, Messaoudi M, Nejdi A, Marcel A, Ungeeheuer M-N, Rougeot C (2006) Human Opiorphin, a natural antinociceptive modulator of opioid-dependent pathways. Proc Natl Acad Sci U S A 103(47):17979–17984

    CAS  Google Scholar 

  96. Barclay RK, Phillipps MA (1978) Inhibition of the enzymatic degradation of leu-enkephalin by puromycin. Biochem Biophys Res Commun 81(4):1119–1123

    CAS  Google Scholar 

  97. Chen J-G, Weber SG (1995) Detection of bioactive oligopeptides after microbore HPLC with electrochemical detection of their Cu(II) complexes: effect of operating parameters on sensitivity and selectivity. Anal Chem 67(19):3596–3604

    CAS  Google Scholar 

  98. Chen J-G, Woltman SJ, Weber SG (1995) Sensitivity and selectivity of the electrochemical detection of the copper(II) complexes of bioactive peptides, and comparison to model studies by rotating ring-disc electrode. J Chromatogr A 691(1–2):301–315

    CAS  Google Scholar 

  99. Woltman SJ, Chen J-G, Weber SG, Tolley JO (1995) Determination of the pharmaceutical peptide TP9201 by post-column reaction with copper(II) followed by electrochemical detection. J Pharm Biomed Anal 14(1/2):155–164

    CAS  Google Scholar 

  100. Müller H, Neufang H, Knobloch K (1983) Kinetic studies on the membrane-bound and the purified coupling factor-ATPase from Rhodopseudomonas sphaeroides. Arch Biochem Biophys 224(1):283–289

    Google Scholar 

  101. Robishaw JD, Neely JR (1985) Coenzyme A metabolism. Am J Physiol Endocrinol Metab 248(1):E1–E9

    CAS  Google Scholar 

  102. Stipanuk MH (2004) Sulfur amino acid metabolism: pathways for production and removal of homocysteine and cysteine. Annu Rev Nutr 24:539–577

    CAS  Google Scholar 

  103. Leonardi R, Zhang YM, Rock CO, Jackowski S (2005) Coenzyme A: Back in action. Prog Lipid Res 44(2–3):125–153

    CAS  Google Scholar 

  104. Spry C, Kirk K, Saliba KJ (2008) Coenzyme A biosynthesis: An antimicrobial drug target. Fems Microbiol Rev 32(1):56–106

    CAS  Google Scholar 

  105. Stipanuk MH, Dominy JE, Lee J-I, Coloso RM (2006) Mammalian cysteine metabolism: New insights into regulation of cysteine metabolism. J Nutr 136(6):1652S–1659S

    CAS  Google Scholar 

  106. Wu J, Ferrance JP, Landers JP, Weber SG (2010) Integration of a Precolumn Fluorogenic Reaction, Separation, and Detection of Reduced Glutathione. Anal Chem 82(17):7267–7273

    CAS  Google Scholar 

  107. Wu J, Xu K, Landers JP, Weber SG (2013) An in Situ Measurement of Extracellular Cysteamine, Homocysteine, and Cysteine Concentrations in Organotypic Hippocampal Slice Cultures by Integration of Electroosmotic Sampling and Microfluidic Analysis. Anal Chem 85(6):3095–3103

    CAS  Google Scholar 

  108. Wu J, Sandberg M, Weber SG (2013) Integrated Electroosmotic Perfusion of Tissue with Online Microfluidic Analysis to Track the Metabolism of Cystamine, Pantethine, and Coenzyme A. Anal Chem 85(24):12020–12027

    CAS  Google Scholar 

  109. Fox MW, Anderson RE, Meyer FB (1993) Neuroprotection by corticotropin releasing factor during hypoxia in rat brain. Stroke 24(7):1072–1075

    CAS  Google Scholar 

  110. Maecker H, Desai A, Dash R, Rivier J, Vale W, Sapolsky R (1997) Astressin, a novel and potent CRF antagonist, is neuroprotective in the hippocampus when administered after a seizure. Brain Res 744(1):166–170

    CAS  Google Scholar 

  111. Scharfman HE, MacLusky NJ (2006) Estrogen and brain-derived neurotrophic factor (BDNF) in hippocampus: Complexity of steroid hormone-growth factor interactions in the adult CNS. Front Neuroendocrinol 27(4):415–435

    CAS  Google Scholar 

  112. Shishido Y, Furushiro M, Tanabe S, Shibata S, Hashimoto S, Yokokura T (1999) Effects of prolyl endopeptidase inhibitors and neuropeptides on delayed neuronal death in rats. Eur J Pharmacol 372(2):135–142

    CAS  Google Scholar 

  113. Malva JO, Xapelli S, Baptista S, Valero J, Agasse F, Ferreira R, Silva AP (2012) Multifaces of neuropeptide Y in the brain – Neuroprotection, neurogenesis and neuroinflammation. Neuropeptides 46(6):299–308

    CAS  Google Scholar 

  114. Ben-Ari Y (1990) Galanin and Glibenclamide Modulate the Anoxic Release of Glutamate in Rat CA3 Hippocampal Neurons. Eur J Neurosci 2(1):62–68

    Google Scholar 

  115. Hwang IK, Yoo K-Y, Kim DS, Do S-G, Oh Y-S, Kang T-C, Han BH, Kim JS, Won MH (2004) Expression and changes of galanin in neurons and microglia in the hippocampus after transient forebrain ischemia in gerbils. Brain Res 1023(2):193–199

    CAS  Google Scholar 

  116. Faraji AH, Cui JJ, Guy Y, Li L, Gavigan CA, Strein TG, Weber SG (2011) Synthesis and Characterization of a Hydrogel with Controllable Electroosmosis: A Potential Brain Tissue Surrogate for Electrokinetic Transport. Langmuir 27:13635–13642, Copyright (C) 2014 American Chemical Society (ACS). All Rights Reserved

    CAS  Google Scholar 

  117. Olofsson J, Nolkrantz K, Ryttsen F, Lambie BA, Weber SG, Orwar O (2003) Single-cell electroporation. Curr Opin Biotechnol 14(29–34)

  118. Olofsson J, Levin M, Stroemberg A, Weber SG, Ryttsen F, Orwar O (2005) Generation of focused electric field patterns at dielectric surfaces. Anal Chem 77:4667–4672

    CAS  Google Scholar 

  119. Olofsson J, Levin M, Stroemberg A, Weber SG, Ryttsen F, Orwar O (2007) Scanning electroporation of selected areas of adherent cell cultures. Anal Chem 79:4410–4418

    CAS  Google Scholar 

  120. Zudans I, Agarwal A, Orwar O, Weber SG (2007) Numerical calculations of single-cell electroporation with an electrolyte-filled capillary. Biophys J 92:3696–3705

    CAS  Google Scholar 

  121. Hamsher AE, Xu H, Guy Y, Sandberg M, Weber SG (2010) Minimizing Tissue Damage in Electroosmotic Sampling. Anal Chem 82(15):6370–6376

    CAS  Google Scholar 

  122. Rupert AE, Ou Y, Sandberg M, Weber SG (2013) Assessment of Tissue Viability Following Electroosmotic Push–Pull Perfusion from Organotypic Hippocampal Slice Cultures. ACS Chem Neurosci 4(5):849–857

    CAS  Google Scholar 

Download references

Acknowledgements

This work has been funded by the National Institutes of Health (Grants R01 GM044842 and GM066018) and a Dietrich School of Arts and Sciences Fellowship to Y.O. from the Kenneth P. Dietrich School of Arts and Sciences at the University of Pittsburgh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen G. Weber.

Additional information

ABC Highlights: authored by Rising Stars and Top Experts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ou, Y., Wu, J., Sandberg, M. et al. Electroosmotic perfusion of tissue: sampling the extracellular space and quantitative assessment of membrane-bound enzyme activity in organotypic hippocampal slice cultures. Anal Bioanal Chem 406, 6455–6468 (2014). https://doi.org/10.1007/s00216-014-8067-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-8067-2

Keywords

Navigation