Skip to main content
Log in

Separation and quantification of monoclonal-antibody aggregates by hollow-fiber-flow field-flow fractionation

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Hollow-fiber-flow field-flow fractionation (HF5) separates protein molecules on the basis of the difference in the diffusion coefficient, and can evaluate the aggregation ratio of proteins. However, HF5 is still a minor technique because information on the separation conditions is limited. We examined in detail the effect of different settings, including the main-flow rate, the cross-flow rate, the focus point, the injection amount, and the ionic strength of the mobile phase, on fractographic characteristics. On the basis of the results, we proposed optimized conditions of the HF5 method for quantification of monoclonal antibody in sample solutions. The HF5 method was qualified regarding the precision, accuracy, linearity of the main peak, and quantitation limit. In addition, the HF5 method was applied to non-heated Mab A and heat-induced-antibody-aggregate-containing samples to evaluate the aggregation ratio and the distribution extent. The separation performance was comparable with or better than that of conventional methods including analytical ultracentrifugation–sedimentation velocity and asymmetric-flow field-flow fractionation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Reichert JM (2008) Curr Pharm Biotechnol 9:423–430

    Article  CAS  Google Scholar 

  2. Cromwell ME, Hilario E, Jacobson F (2006) AAPS J 8:E572–E579

    Article  CAS  Google Scholar 

  3. Wang W (1999) Int J Pharm 185:129–188

    Article  CAS  Google Scholar 

  4. Filipe V, Hawe A, Carpenter JF, Jiskoot W (2013) Trends Anal Chem 49:118–125

    Article  CAS  Google Scholar 

  5. Eon-Duval A, Broly H, Gleixner R (2012) Biotechnol Prog 28:608–622

    Article  CAS  Google Scholar 

  6. Rosenberg AS, Worobec A (2004) Biopharm Int 17:22–26

    Google Scholar 

  7. Rosenberg AS (2006) AAPS J 8:E501–E507

    Article  Google Scholar 

  8. Carpenter JF, Randolph TW, Jiskoot W, Crommelin DJA, Middaugh CR, Winter G, Fan YX, Kirshner S, Verthelyi D, Kozlowski S, Clouse KA, Swann PG, Rosenberg AS, Cherney B (2009) J Pharm Sci 98:1202–1205

    Article  Google Scholar 

  9. Singh SK, Afonina N, Awwad M, Bechtold-Peters K, Blue JT, Chou D, Cromwell M, Krause HJ, Mahler HC, Meyer BK, Narhi L, Nesta DP, Spitznagel T (2010) J Pharm Sci 99:3302–3321

    Article  CAS  Google Scholar 

  10. Schuck P (2000) Biophys J 78:1606–1619

    Article  CAS  Google Scholar 

  11. Lebowitz J, Lewis MS, Schuck P (2002) Protein Sci 11:2067–2079

    Article  CAS  Google Scholar 

  12. Liu J, Andya JD, Shire SJ (2006) AAPS J 8:E580–E589

    Article  CAS  Google Scholar 

  13. Arakawa T, Philo JS, Ejima D, Tsumoto K, Arisaka F (2007) Bioprocess Int 5:36–47

    CAS  Google Scholar 

  14. Arakawa T, Philo JS, Ejima D, Sato H, Tsumoto K (2007) Bioprocess Int 4:52–70

    Google Scholar 

  15. U S Department of Health and Human Services Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Center for Biologics Evaluation and Research (CBER) (2013) Guidance for Industry Immunogenicity Assessment for therapeutic protein products

  16. Arakawa T, Philo JS, Ejima, Tsumoto K, Arisaka F (2006) Bioprocess Int 4:42–43

    Google Scholar 

  17. Gabrielson JP, Brader ML, Pekar AH, Mathis KB, Winter G, Carpenter JF, Randolph TW (2007) J Pharm Sci 96:268–279

    Article  CAS  Google Scholar 

  18. Arakawa T, Ejima D, Li T, Philo JS (2009) J Pharm Sci 99:1674–1692

    Google Scholar 

  19. Carpenter JF, Randolph TW, Jiskoot W, Crommelin DJ, Middaugh CR, Winter (2010) J Pharm Sci 99:2200–2208

    Article  CAS  Google Scholar 

  20. Schuck P http://www.analyticalultracentrifugation.com/default.htm

  21. Cao S, Pollastrini J, Jiang Y (2009) Curr Pharm Biotechnol 10:382–390

    Article  CAS  Google Scholar 

  22. Jönsson JÅ, Carlshaf A (1989) Anal Chem 61:11–18

    Article  Google Scholar 

  23. Carlshaf A, Jönsson JÅ (1989) J Chromatogr A 461:89–93

    Article  CAS  Google Scholar 

  24. Carlshaf A, Jönsson JÅ (1991) J Mirocolumn Sep 3:411–416

    Article  CAS  Google Scholar 

  25. Carlshaf A, Jönsson JÅ (1993) Sep Sci Technol 28:1031–1042

    Article  CAS  Google Scholar 

  26. Reschiglian P, Roda B, Zattoni A, Tanase M, Marassi V, Serani S (2014) Anal Bioanal Chem 406:1619–1627

    Article  CAS  Google Scholar 

  27. Kang D, Moon MH (2005) Anal Chem 77:4207–4212

    Article  CAS  Google Scholar 

  28. Henriksson G, Englund AK, Johansson G, Lundahl P (1995) Electrophoresis 16:1377–1380

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Fukuda or Kenji Kano.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 51.5 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fukuda, J., Iwura, T., Yanagihara, S. et al. Separation and quantification of monoclonal-antibody aggregates by hollow-fiber-flow field-flow fractionation. Anal Bioanal Chem 406, 6257–6264 (2014). https://doi.org/10.1007/s00216-014-8065-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-8065-4

Keywords

Navigation