Skip to main content
Log in

A quantitative HPLC–MS/MS method for studying internal concentrations and toxicokinetics of 34 polar analytes in zebrafish (Danio rerio) embryos

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

An analytical method using high-performance liquid chromatography–tandem mass spectrometry was developed to determine internal concentrations of 34 test compounds such as pharmaceuticals and pesticides in zebrafish embryos (ZFE), among them, cimetidine, 2,4-dichlorophenoxyacetic acid, metoprolol, atropine and phenytoin. For qualification and quantification, multiple reaction monitoring mode was used. The linear range extends from 0.075 ng/mL for thiacloprid and metazachlor and 7.5 ng/mL for coniine and clofibrate to 250 ng/mL for many of the test compounds. Matrix effects were strongest for nicotine, but never exceeded ±20 % for any of the developmental stages of the ZFE. Method recoveries ranged from 90 to 110 % from an analysis of nine pooled ZFE. These findings together with the simple sample preparation mean this approach is suitable for the determination of internal concentrations from only nine individual ZFE in all life stages up to 96 h post-fertilization. Exemplarily, the time course of the internal concentrations of clofibric acid, metribuzin and benzocaine in ZFE was studied over 96 h, and three different patterns were distinguished, on the basis of the speed and extent of uptake and whether or not a steady state was reached. Decreasing internal concentrations may be due to metabolism in the ZFE.

Quantification of polar pollutants in different life stages of the zebrafish embryo by LC-MS/MS

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ali S, Champagne DL, Spaink HP, Richardson MK (2011) Zebrafish embryos and larvae: a new generation of disease models and drug screens. Birth Defects Res C 93:115–133

    Article  CAS  Google Scholar 

  2. Lieschke GJ, Currie PD (2007) Animal models of human disease: zebrafish swim into view. Nat Rev Genet 8:353–367

    Article  CAS  Google Scholar 

  3. Scholz S, Fischer S, Gundel U, Küster E, Luckenbach T, Voelker D (2008) The zebrafish embryo model in environmental risk assessment--applications beyond acute toxicity testing. Environ Sci Pollut R 15:394–404

    Article  CAS  Google Scholar 

  4. Sipes NS, Padilla S, Knudsen TB (2011) Zebrafish-as an integrative model for twenty-first century toxicity testing. Birth Defects Res C 93:256–267

  5. Van den Bulck K, Hill A, Mesens N, Diekman H, De Schaepdrijver L, Lammens L (2011) Zebrafish developmental toxicity assay: a fishy solution to reproductive toxicity screening, or just a red herring? Reprod Toxicol 32:213–219

    Article  Google Scholar 

  6. Ali S, Champagne DL, Richardson MK (2012) Behavioral profiling of zebrafish embryos exposed to a panel of 60 water-soluble compounds. Behav Brain Res 228:272–283

    Article  CAS  Google Scholar 

  7. Ali S, van Mil HG, Richardson MK (2011) Large-scale assessment of the zebrafish embryo as a possible predictive model in toxicity testing. PLoS One 6:e21076

    Article  CAS  Google Scholar 

  8. Padilla S, Corum D, Padnos B, Hunter DL, Beam A, Houck KA, Sipes N, Kleinstreuer N, Knudsen T, Dix DJ, Reif DM (2012) Zebrafish developmental screening of the ToxCast (TM) Phase I chemical library. Reprod Toxicol 33:174–187

    Article  CAS  Google Scholar 

  9. Lammer E, Carr GJ, Wendler K, Rawlings JM, Belanger SE, Braunbeck T (2009) Is the fish embryo toxicity test (FET) with the zebrafish (Danio rerio) a potential alternative for the fish acute toxicity test? Comp Biochem Physiol C 149:196–209

    CAS  Google Scholar 

  10. OECD (2013) OECD test no. 236: fish embryo acute toxicity (FET) test. OECD Publishing

  11. Carlsson G, Patring J, Kreuger J, Norrgren L, Oskarsson A (2013) Toxicity of 15 veterinary pharmaceuticals in zebrafish (Danio rerio) embryos. Aquat Toxicol 126:30–41

    Article  CAS  Google Scholar 

  12. van den Brandhof EJ, Montforts M (2010) Fish embryo toxicity of carbamazepine, diclofenac and metoprolol. Ecotoxicol Environ Saf 73:1862–1866

    Article  Google Scholar 

  13. Weigt S, Huebler N, Strecker R, Braunbeck T, Broschard TH (2011) Zebrafish (Danio rerio) embryos as a model for testing proteratogens. Toxicology 281:25–36

    Article  CAS  Google Scholar 

  14. Escher BI, Ashauer R, Dyer S, Hermens JL, Lee JH, Leslie HA, Mayer P, Meador JP, Warne MS (2011) Crucial role of mechanisms and modes of toxic action for understanding tissue residue toxicity and internal effect concentrations of organic chemicals. Integr Environ Assess Manag 7:28–49

    Article  CAS  Google Scholar 

  15. Escher BI, Hermens JLM (2004) Internal exposure: Linking bioavailability to effects. Environ Sci Technol 38:455a–462a

    Article  CAS  Google Scholar 

  16. El-Amrani S, Pena-Abaurrea M, Sanz-Landaluze J, Ramos L, Guinea J, Camara C (2012) Bioconcentration of pesticides in Zebrafish eleutheroembryos (Danio rerio). Sci Total Environ 425:184–190

    Article  CAS  Google Scholar 

  17. Gonzalo-Lumbreras R, Sanz-Landaluze J, Guinea J, Camara C (2012) Miniaturized extraction methods of triclosan from aqueous and fish roe samples. Bioconcentration studies in zebrafish larvae (Danio rerio). Anal Bioanal Chem 403:927–937

    Article  CAS  Google Scholar 

  18. Stanley KA, Curtis LR, Simonich SLM, Tanguay RL (2009) Endosulfan I and endosulfan sulfate disrupts zebrafish embryonic development. Aquat Toxicol 95:355–361

    Article  CAS  Google Scholar 

  19. Jones HS, Trollope HT, Hutchinson TH, Panter GH, Chipman JK (2012) Metabolism of ibuprofen in zebrafish larvae. Xenobiotica 42:1069–1075

    Article  CAS  Google Scholar 

  20. Hu G, Siu SO, Li S, Chu IK, Kwan YW, Chan SW, Leung GP, Yan R, Lee SM (2012) Metabolism of calycosin, an isoflavone from Astragali Radix, in zebrafish larvae. Xenobiotica 42:294–303

    Article  CAS  Google Scholar 

  21. Alderton W, Berghmans S, Butler P, Chassaing H, Fleming A, Golder Z, Richards F, Gardner I (2010) Accumulation and metabolism of drugs and CYP probe substrates in zebrafish larvae. Xenobiotica 40:547–557

    Article  CAS  Google Scholar 

  22. Kretschmann A, Ashauer R, Preuss TG, Spaak P, Escher BI, Hollender J (2011) Toxicokinetic model describing bioconcentration and biotransformation of diazinon in Daphnia magna. Environ Sci Technol 45:4995–5002

    Article  CAS  Google Scholar 

  23. Kühnert A, Vogs C, Altenburger R, Küster E (2013) The internal concentration of organic substances in fish embryos--a toxicokinetic approach. Environ Toxicol Chem 32:1819–1827

    Article  Google Scholar 

  24. El-Amrani S, Sanz-Landaluze J, Guinea J, Camara C (2013) Rapid determination of polycyclic aromatic hydrocarbons (PAHs) in zebrafish eleutheroembryos as a model for the evaluation of PAH bioconcentration. Talanta 104:67–74

    Article  CAS  Google Scholar 

  25. Usenko CY, Robinson EM, Bruce ED, Usenko S (2013) Uptake and metabolism of individual polybrominated diphenyl ether congeners by embryonic zebrafish. Environ Toxicol Chem 32:1153–1160

  26. Carlsson G, Orn S, Larsson DGJ (2009) Effluent from bulk drug production is toxic to aquatic vertebrates. Environ Toxicol Chem 28:2656–2662

    Article  CAS  Google Scholar 

  27. ISO (1996) Water quality—determination of the acute lethal toxicity of substances to a freshwater fish. ISO 7346-1

  28. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic-development of the zebrafish. Dev Dyn 203:253–310

  29. Westerfield M (2000) The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio), vol 4. University of Oregon Press, Eugene

    Google Scholar 

  30. Bluthgen N, Zucchi S, Fent K (2012) Effects of the UV filter benzophenone-3 (oxybenzone) at low concentrations in zebrafish (Danio rerio). Toxicol Appl Pharmacol 263:184–194

    Article  CAS  Google Scholar 

  31. Epel D, Luckenbach T, Stevenson CN, Macmanus-Spencer LA, Hamdoun A, Smital T (2008) Efflux transporters: newly appreciated roles in protection against pollutants. Environ Sci Technol 42:3914–3920

    Article  CAS  Google Scholar 

  32. Meinertz JR, Gingerich WH, Allen JL (1991) Metabolism and elimination of benzocaine by rainbow-trout, Oncorhynchus-Mykiss. Xenobiotica 21:525–533

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is part of the research topic “Chemicals in the Environment” (CITE) within the research programme of the Helmholtz Centre for Environmental Research–UFZ. We thank C. Petzold and J. Müller for their support in laboratory work and S. Scholz for helpful discussions on ZFE testing and toxicokinetics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten Reemtsma.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 521 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brox, S., Ritter, A.P., Küster, E. et al. A quantitative HPLC–MS/MS method for studying internal concentrations and toxicokinetics of 34 polar analytes in zebrafish (Danio rerio) embryos. Anal Bioanal Chem 406, 4831–4840 (2014). https://doi.org/10.1007/s00216-014-7929-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-7929-y

Keywords

Navigation