Skip to main content
Log in

Multivalent chelators for spatially and temporally controlled protein functionalization

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Site-specific protein modification—e.g. for immobilization or labelling—is a key prerequisite for numerous bioanalytical applications. Although modification by use of short peptide tags is particularly attractive, efficient and bio-orthogonal systems are still lacking. Here, we review the application of multivalent chelators (MCH) for high-affinity yet reversible recognition of oligohistidine (His)-tagged proteins. MCH are based on multiple nitrilotriacetic acid (NTA) moieties grafted on to molecular scaffolds suitable for conjugation to surfaces, probes or other biomolecules. Reversible interaction with the His-tag is mediated via transition metal ions chelated by the NTA moieties. The small size and biochemical compatibility of these recognition units and the possibility of rapid dissociation of the interaction with His-tagged proteins despite sub-nanomolar binding affinity, enable distinct and versatile handling and modification of recombinant proteins. In this review, we briefly introduce the key principles and features of MCH–His-tag interactions and recapitulate the broad spectrum of bioanalytical applications with a focus on quantitative protein interaction analysis on micro or nano-patterned solid surfaces and specific protein labelling in living cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ueda EK, Gout PW, Morganti L (2003) Current and prospective applications of metal ion-protein binding. J Chromatogr A 988(1):1–23

    CAS  Google Scholar 

  2. Porath J, Carlsson J, Olsson I, Belfrage G (1975) Metal chelate affinity chromatography, a new approach to protein fractionation. Nature 258(5536):598–599

    CAS  Google Scholar 

  3. Hochuli E, Dobeli H, Schacher A (1987) New metal chelate adsorbent selective for proteins and peptides containing neighbouring histidine residues. J Chromatogr 411:177–184

    CAS  Google Scholar 

  4. Dorn IT, Neumaier KR, Tampe R (1998) Molecular recognition of histidine-tagged molecules by metal- chelating lipids monitored by fluorescence energy transfer and correlation spectroscopy. J Am Chem Soc 120(12):2753–2763

    CAS  Google Scholar 

  5. Kapanidis AN, Ebright YW, Ebright RH (2001) Site-specific incorporation of fluorescent probes into protein: hexahistidine-tag-mediated fluorescent labeling with (Ni(2+):nitrilotriacetic Acid (n)-fluorochrome conjugates. J Am Chem Soc 123(48):12123–12125

    CAS  Google Scholar 

  6. Guignet EG, Hovius R, Vogel H (2004) Reversible site-selective labeling of membrane proteins in live cells. Nat Biotechnol 22(4):440–444

    CAS  Google Scholar 

  7. Lata S, Reichel A, Brock R, Tampé R, Piehler J (2005) High-affinity adaptors for switchable recognition of histidine-tagged proteins. J Am Chem Soc 127(29):10205–10215

    CAS  Google Scholar 

  8. Huang Z, Park JI, Watson DS, Hwang P, Szoka FC Jr (2006) Facile synthesis of multivalent nitrilotriacetic acid (NTA) and NTA conjugates for analytical and drug delivery applications. Bioconjug Chem 17(6):1592–1600

    CAS  Google Scholar 

  9. Kim JS, Valencia CA, Liu R, Lin W (2007) Highly-Efficient Purification of Native Polyhistidine-Tagged Proteins by Multivalent NTA-Modified Magnetic Nanoparticles. Bioconjug Chem 18(2):333–341. doi:10.1021/bc060195l

    CAS  Google Scholar 

  10. Huang Z, Hwang P, Watson DS, Cao L, Szoka FC (2009) Tris-Nitrilotriacetic Acids of Subnanomolar Affinity Toward Hexahistidine Tagged Molecules. Bioconjug Chem 20(8):1667–1672. doi:10.1021/bc900309n

    CAS  Google Scholar 

  11. Goodman RP, Erben CM, Malo J, Ho WM, McKee ML, Kapanidis AN, Turberfield AJ (2009) A Facile Method for Reversibly Linking a Recombinant Protein to DNA. ChemBioChem 10(9):1551–1557. doi:10.1002/cbic.200900165

    CAS  Google Scholar 

  12. Knezevic J, Langer A, Hampel PA, Kaiser W, Strasser R, Rant U (2012) Quantitation of Affinity, Avidity, and Binding Kinetics of Protein Analytes with a Dynamically Switchable Biosurface. J Am Chem Soc 134(37):15225–15228. doi:10.1021/ja3061276

    CAS  Google Scholar 

  13. Nieba L, Nieba-Axmann SE, Persson A, Hamalainen M, Edebratt F, Hansson A, Lidholm J, Magnusson K, Karlsson AF, Pluckthun A (1997) BIACORE analysis of histidine-tagged proteins using a chelating NTA sensor chip. Anal Biochem 252(2):217–228

    CAS  Google Scholar 

  14. Sigal GB, Bamdad C, Barberis A, Strominger J, Whitesides GM (1996) A self-assembled monolayer for the binding and study of histidine tagged proteins by surface plasmon resonance. Anal Chem 68(3):490–497

    CAS  Google Scholar 

  15. Lata S, Piehler J (2005) Stable and functional immobilization of histidine-tagged proteins via multivalent chelator head-groups on a molecular poly(ethylene glycol) brush. Anal Chem 77(4):1096–1105

    CAS  Google Scholar 

  16. Valiokas R, Klenkar G, Tinazli A, Reichel A, Tampe R, Piehler J, Liedberg B (2008) Self-Assembled Monolayers Containing Terminal Mono-, Bis-, and Tris-nitrilotriacetic Acid Groups: Characterization and Application. Langmuir 24(9):4959–4967. doi:10.1021/la703709a

    CAS  Google Scholar 

  17. Waichman S, You C, Beutel O, Bhagawati M, Piehler J (2010) Maleimide Photolithography for Single-Molecule Protein − Protein Interaction Analysis in Micropatterns. Anal Chem 83(2):501–508. doi:10.1021/ac1021453

    Google Scholar 

  18. Valiokas R, Klenkar G, Tinazli A, Tampé R, Liedberg B, Piehler J (2006) Differential protein assembly on micropatterned surfaces with tailored molecular and surface multivalency. Chembiochem 7(9):1325–1329

    CAS  Google Scholar 

  19. Bhagawati M, You C, Piehler J (2013) Quantitative Real-Time Imaging of Protein–Protein Interactions by LSPR Detection with Micropatterned Gold Nanoparticles. Anal Chem 85(20):9564–9571. doi:10.1021/ac401673e

    CAS  Google Scholar 

  20. Tinazli A, Tang J, Valiokas R, Picuric S, Lata S, Piehler J, Liedberg B, Tampe R (2005) High-Affinity Chelator Thiols for Switchable and Oriented Immobilization of Histidine-Tagged Proteins: A Generic Platform for Protein Chip Technologies. Chemistry 11(18):5249–5259

    CAS  Google Scholar 

  21. Valiokas R, Klenkar G, Tinazli A, Reichel A, Tampe R, Piehler J, Liedberg B (2008) Self-assembled monolayers containing terminal mono-, bis-, and tris-nitrilotriacetic acid groups: characterization and application. Langmuir 24(9):4959–4967

    CAS  Google Scholar 

  22. Reichel A, Schaible D, Al Furoukh N, Cohen M, Schreiber G, Piehler J (2007) Noncovalent, Site-Specific Biotinylation of Histidine-Tagged Proteins. Anal Chem 79(22):8590–8600

    CAS  Google Scholar 

  23. Heeres JT, Kim S-H, Leslie BJ, Lidstone EA, Cunningham BT, Hergenrother PJ (2009) Identifying Modulators of Protein − Protein Interactions Using Photonic Crystal Biosensors. J Am Chem Soc 131(51):18202–18203. doi:10.1021/ja907066r

    CAS  Google Scholar 

  24. Bieling P, Telley IA, Piehler J, Surrey T (2008) Processive kinesins require loose mechanical coupling for efficient collective motility. EMBO Rep 9(11):1121–1127

    CAS  Google Scholar 

  25. Alonso JM, Reichel A, Piehler J, del Campo A (2007) Photopatterned Surfaces for Site-Specific and Functional Immobilization of Proteins. Langmuir 24(2):448–457. doi:10.1021/la702696b

    Google Scholar 

  26. Bhagawati M, Ghosh S, Reichel A, Froehner K, Surrey T, Piehler J (2009) Organization of motor proteins into functional micropatterns fabricated by a photo-induced Fenton reaction. Angew Chem Int Ed Engl 48(48):9188–9191. doi:10.1002/anie.200904576

    CAS  Google Scholar 

  27. Klenkar G, Valiokas R, Lundström I, Tinazli A, Tampé R, Piehler J, Liedberg B (2006) Piezo Dispensed Microarray of Multivalent Chelating Thiols for Dissecting Complex Protein-Protein Interactions. Anal Chem 78:3643–3650

    CAS  Google Scholar 

  28. Andre T, Reichel A, Wiesmuller KH, Tampe R, Piehler J, Brock R (2009) Selectivity of competitive multivalent interactions at interfaces. ChemBioChem 10(11):1878–1887. doi:10.1002/cbic.200900001

    CAS  Google Scholar 

  29. Cinier M, Petit M, Williams MN, Fabre RM, Fdr P, Talham DR, Bujoli B, Tellier C (2009) Bisphosphonate Adaptors for Specific Protein Binding on Zirconium Phosphonate-based Microarrays. Bioconjug Chem 20(12):2270–2277. doi:10.1021/bc9002597

    CAS  Google Scholar 

  30. Rakickas T, Gavutis M, Reichel A, Piehler J, Liedberg B, Rn V (2008) Protein − Protein Interactions in Reversibly Assembled Nanopatterns. Nano Lett 8(10):3369–3375. doi:10.1021/nl801892m

    CAS  Google Scholar 

  31. Turchanin A, Tinazli A, El-Desawy M, Großmann H, Schnietz M, Solak HH, Tampé R, Gölzhäuser A (2008) Molecular Self-Assembly, Chemical Lithography, and Biochemical Tweezers: A Path for the Fabrication of Functional Nanometer-Scale Protein Arrays. Adv Mater 20(3):471–477. doi:10.1002/adma.200702189

    CAS  Google Scholar 

  32. Mitchell N, Ebner A, Hinterdorfer P, Tampé R, Howorka S (2010) Chemical Tags Mediate the Orthogonal Self-Assembly of DNA Duplexes into Supramolecular Structures. Small 6(16):1732–1735. doi:10.1002/smll.201000790

    CAS  Google Scholar 

  33. Bhagawati M, Lata S, Tampé R, Piehler J (2010) Native Laser Lithography of His-Tagged Proteins by Uncaging of Multivalent Chelators. J Am Chem Soc 132(17):5932–5933. doi:10.1021/ja1000714

    CAS  Google Scholar 

  34. Grunwald C, Schulze K, Reichel A, Weiss VU, Blaas D, Piehler J, Wiesmuller KH, Tampe R (2010) In situ assembly of macromolecular complexes triggered by light. Proc Natl Acad Sci U S A 107(14):6146–6151. doi:10.1073/pnas.0912617107

    CAS  Google Scholar 

  35. Labòria N, Wieneke R, Tampé R (2013) Control of Nanomolar Interaction and In Situ Assembly of Proteins in Four Dimensions by Light. Angew Chem Int Ed 52(3):848–853. doi:10.1002/anie.201206698

    Google Scholar 

  36. Tinazli A, Piehler J, Beuttler M, Guckenberger R, Tampe R (2007) Native protein nanolithography that can write, read and erase. Nat Nanotechnol 2(4):220–225

    CAS  Google Scholar 

  37. Schmitt L, Dietrich C, Tampe R (1994) Synthesis and Characterization of Chelator-Lipids for Reversible Immobilization of Engineered Proteins at Self-Assembled Lipid Interfaces. J Am Chem Soc 116(19):8485–8491

    CAS  Google Scholar 

  38. Dietrich C, Schmitt L, Tampe R (1995) Molecular organization of histidine-tagged biomolecules at self-assembled lipid interfaces using a novel class of chelator lipids. Proc Natl Acad Sci U S A 92(20):9014–9018

    CAS  Google Scholar 

  39. Kubalek EW, Le Grice SF, Brown PO (1994) Two-dimensional crystallization of histidine-tagged, HIV-1 reverse transcriptase promoted by a novel nickel-chelating lipid. J Struct Biol 113(2):117–123

    CAS  Google Scholar 

  40. Nye JA, Groves JT (2008) Kinetic control of histidine-tagged protein surface density on supported lipid bilayers. Langmuir 24(8):4145–4149. doi:10.1021/la703788h

    CAS  Google Scholar 

  41. van Broekhoven CL, Altin JG (2005) The novel chelator lipid 3(nitrilotriacetic acid)-ditetradecylamine (NTA(3)-DTDA) promotes stable binding of His-tagged proteins to liposomal membranes: potent anti-tumor responses induced by simultaneously targeting antigen, cytokine and costimulatory signals to T cells. Biochim Biophys Acta 1716(2):104–116. doi:10.1016/j.bbamem.2005.09.003

    Google Scholar 

  42. Lata S, Gavutis M, Piehler J (2006) Monitoring the dynamics of ligand-receptor complexes on model membranes. J Am Chem Soc 128(1):6–7

    CAS  Google Scholar 

  43. Lamken P, Lata S, Gavutis M, Piehler J (2004) Ligand-induced assembling of the type I interferon receptor on supported lipid bilayers. J Mol Biol 341(1):303–318

    CAS  Google Scholar 

  44. Gavutis M, Lata S, Lamken P, Müller P, Piehler J (2005) Lateral ligand-receptor interactions on membranes probed by simultaneous fluorescence-interference detection. Biophys J 88(6):4289–4302

    CAS  Google Scholar 

  45. Eisele NB, Frey S, Piehler J, Gorlich D, Richter RP (2010) Ultrathin nucleoporin phenylalanine-glycine repeat films and their interaction with nuclear transport receptors. EMBO Rep 11(5):366–372. doi:10.1038/embor.2010.34

    CAS  Google Scholar 

  46. Eisele NB, Labokha AA, Frey S, Gorlich D, Richter RP (2013) Cohesiveness tunes assembly and morphology of FG nucleoporin domain meshworks - Implications for nuclear pore permeability. Biophys J 105(8):1860–1870. doi:10.1016/j.bpj.2013.09.006

    CAS  Google Scholar 

  47. Evans SF, Docheva D, Bernecker A, Colnot C, Richter RP, Knothe Tate ML (2013) Solid-supported lipid bilayers to drive stem cell fate and tissue architecture using periosteum derived progenitor cells. Biomaterials 34(8):1878–1887. doi:10.1016/j.biomaterials.2012.09.024

    CAS  Google Scholar 

  48. Beutel O, Nikolaus J, Birkholz O, You C, Schmidt T, Herrmann A, Piehler J (2014) High-fidelity protein targeting into membrane lipid microdomains in living cells. Angew Chem Int Ed Engl 53(5):1311–1315. doi:10.1002/anie.201306328

    CAS  Google Scholar 

  49. Klenkar G, Brian B, Ederth T, Stengel G, Hook F, Piehler J, Liedberg B (2008) Addressable adsorption of lipid vesicles and subsequent protein interaction studies. Biointerphases 3(2):29. doi:10.1116/1.2921867

    Google Scholar 

  50. Watson DS, Platt VM, Cao L, Venditto VJ, Szoka FC Jr (2011) Antibody response to polyhistidine-tagged peptide and protein antigens attached to liposomes via lipid-linked nitrilotriacetic acid in mice. Clin Vaccine Immunol: CVI 18(2):289–297. doi:10.1128/CVI.00425-10

    CAS  Google Scholar 

  51. Brellier M, Barlaam B, Mioskowski C, Baati R (2009) Insight into the Complexation Mode of Bis(nitrilotriacetic acid) (NTA) Ligands with Ni2+ Involved in the Labeling of Histidine-Tagged Proteins. Chem Eur J 15(46):12689–12701. doi:10.1002/chem.200901213

    CAS  Google Scholar 

  52. Lata S, Gavutis M, Tampé R, Piehler J (2006) Specific and stable fluorescence labeling of histidine-tagged proteins for dissecting multi-protein complex formation. J Am Chem Soc 128(7):2365–2372

    CAS  Google Scholar 

  53. Arai S, Yoon S-I, Murata A, Takabayashi M, Wu X, Lu Y, Takeoka S, Ozaki M (2011) Fluorescent “Turn-on” system utilizing a quencher-conjugated peptide for specific protein labeling of living cells. Biochem Biophys Res Commun 404(1):211–216. doi:10.1016/j.bbrc.2010.11.095

    CAS  Google Scholar 

  54. Murata A, Arai S, Yoon S-I, Takabayashi M, Ozaki M, Takeoka S (2010) Construction of a ‘turn-on’ fluorescent probe system for His-tagged proteins. Bioorg Med Chem Lett 20(23):6905–6908. doi:10.1016/j.bmcl.2010.10.011

    CAS  Google Scholar 

  55. van der Does C, Presenti C, Schulze K, Dinkelaker S, Tampe R (2006) Kinetics of the ATP hydrolysis cycle of the nucleotide-binding domain of Mdl1 studied by a novel site-specific labeling technique. J Biol Chem 281(9):5694–5701

    Google Scholar 

  56. Strunk JJ, Gregor I, Becker Y, Li Z, Gavutis M, Jaks E, Lamken P, Walz T, Enderlein J, Piehler J (2008) Ligand Binding Induces a Conformational Change in ifnar1 that Is Propagated to Its Membrane-Proximal Domain. J Mol Biol 377(3):725–739

    CAS  Google Scholar 

  57. Wruss J, Pollheimer PD, Meindl I, Reichel A, Schulze K, Schofberger W, Piehler J, Tampe R, Blaas D, Gruber HJ (2009) Conformation of Receptor Adopted upon Interaction with Virus Revealed by Site-Specific Fluorescence Quenchers and FRET Analysis. J Am Chem Soc 131:5478–5482. doi:10.1021/ja807917t

    CAS  Google Scholar 

  58. Strunk JJ, Gregor I, Becker Y, Lamken P, Lata S, Reichel A, Enderlein J, Piehler J (2009) Probing protein conformations by in situ non-covalent fluorescence labeling. Bioconjug Chem 20(1):41–46. doi:10.1021/bc8002088

    CAS  Google Scholar 

  59. Chang J-W, Wu Y-M, Chen Z-Y, Huang S-H, Wang C-H, P-l W, Y-p W, You C, Piehler J, W-h C (2013) Hybrid electron microscopy-FRET imaging localizes the dynamical C-terminus of Tfg2 in RNA polymerase II–TFIIF with nanometer precision. J Struct Biol 184(1):52–62. doi:10.1016/j.jsb.2013.05.015

    CAS  Google Scholar 

  60. Piehler J (2011) Labeling of Oligohistidine-Tagged Proteins. In: Demchenko AP (ed) Advanced Fluorescence Reporters in Chemistry and Biology III, vol 113. Springer Series on Fluorescence. Springer Berlin Heidelberg, pp 297–310. doi:10.1007/978-3-642-18035-4_9

  61. Grunwald C, Schulze K, Giannone G, Cognet L, Lounis B, Choquet D, Tampé R (2011) Quantum-Yield-Optimized Fluorophores for Site-Specific Labeling and Super-Resolution Imaging. J Am Chem Soc 133(21):8090–8093. doi:10.1021/ja200967z

    CAS  Google Scholar 

  62. You C, Wilmes S, Beutel O, Lochte S, Podoplelowa Y, Roder F, Richter C, Seine T, Schaible D, Uze G, Clarke S, Pinaud F, Dahan M, Piehler J (2010) Self-controlled monofunctionalization of quantum dots for multiplexed protein tracking in live cells. Angew Chem Int Ed Engl 49(24):4108–4112. doi:10.1002/anie.200907032

    CAS  Google Scholar 

  63. DeRocco V, Anderson T, Piehler J, Erie DA, Weninger K (2010) Four-color single-molecule fluorescence with noncovalent dye labeling to monitor dynamic multimolecular complexes. Biotechniques 49(5):807–816. doi:10.2144/000113551

    CAS  Google Scholar 

  64. Hauser CT, Tsien RY (2007) A hexahistidine-Zn2 + -dye label reveals STIM1 surface exposure. Proc Natl Acad Sci U S A 104(10):3693–3697. doi:10.1073/pnas.0611713104

    CAS  Google Scholar 

  65. S-h F, Nonaka H, S-h U, Kawase YA, Ojida A, Hamachi I (2012) Design of a multinuclear Zn(ii) complex as a new molecular probe for fluorescence imaging of His-tag fused proteins. Chem Commun 48(4):594–596. doi:10.1039/c1cc16263b

    Google Scholar 

  66. Ojida A, Honda K, Shinmi D, Kiyonaka S, Mori Y, Hamachi I (2006) Oligo-Asp Tag/Zn(II) Complex Probe as a New Pair for Labeling and Fluorescence Imaging of Proteins. J Am Chem Soc 128(32):10452–10459. doi:10.1021/ja0618604

    CAS  Google Scholar 

  67. Nonaka H, Tsukiji S, Ojida A, Hamachi I (2007) Non-enzymatic Covalent Protein Labeling Using a Reactive Tag. J Am Chem Soc 129(51):15777–15779. doi:10.1021/ja074176d

    CAS  Google Scholar 

  68. Nonaka H, S-h F, S-h U, Ojida A, Hamachi I (2010) Selective Covalent Labeling of Tag-Fused GPCR Proteins on Live Cell Surface with a Synthetic Probe for Their Functional Analysis. J Am Chem Soc 132(27):9301–9309. doi:10.1021/ja910703v

    CAS  Google Scholar 

  69. Franz KJ, Nitz M, Imperiali B (2003) Lanthanide-Binding Tags as Versatile Protein Coexpression Probes. ChemBioChem 4(4):265–271. doi:10.1002/cbic.200390046

    CAS  Google Scholar 

  70. Sculimbrene BR, Imperiali B (2006) Lanthanide-Binding Tags as Luminescent Probes for Studying Protein Interactions. J Am Chem Soc 128(22):7346–7352. doi:10.1021/ja061188a

    CAS  Google Scholar 

  71. Martin LJ, Hähnke MJ, Nitz M, Wöhnert J, Silvaggi NR, Allen KN, Schwalbe H, Imperiali B (2007) Double-Lanthanide-Binding Tags: Design, Photophysical Properties, and NMR Applications. J Am Chem Soc 129(22):7106–7113. doi:10.1021/ja070480v

    CAS  Google Scholar 

  72. Silvaggi NR, Martin LJ, Schwalbe H, Imperiali B, Allen KN (2007) Double-Lanthanide-Binding Tags for Macromolecular Crystallographic Structure Determination. J Am Chem Soc 129(22):7114–7120. doi:10.1021/ja070481n

    CAS  Google Scholar 

  73. Baldauf C, Schulze K, Lueders P, Bordignon E, Tampe R (2013) In-situ spin labeling of his-tagged proteins: distance measurements under in-cell conditions. Chem (Weinheim an der Bergstrasse, Germany) 19(41):13714–13719. doi:10.1002/chem.201301921

    CAS  Google Scholar 

  74. Anthony KC, You C, Piehler J, Pomeranz Krummel DA (2014) High-Affinity Gold Nanoparticle Pin to Label and Localize Histidine-Tagged Protein in Macromolecular Assemblies. Structure 22(4):628–635. doi:10.1016/j.str.2014.01.007

  75. Watschinger K, Horak SB, Schulze K, Obermair GJ, Wild C, Koschak A, Sinnegger-Brauns MJ, Tampe R, Striessnig J (2008) Functional properties and modulation of extracellular epitope-tagged Ca(V)2.1 voltage-gated calcium channels. Channels 2(6):461–473

    Google Scholar 

  76. Schulze K, Mulder A, Tinazli A, Tampe R (2006) Controlling the Activity of the 20S Proteasome Complex by Synthetic Gatekeepers. Angew Chem Int Ed Engl

  77. Rossier O, Octeau V, Sibarita JB, Leduc C, Tessier B, Nair D, Gatterdam V, Destaing O, Albiges-Rizo C, Tampe R, Cognet L, Choquet D, Lounis B, Giannone G (2012) Integrins beta1 and beta3 exhibit distinct dynamic nanoscale organizations inside focal adhesions. Nat Cell Biol 14(10):1057–1067. doi:10.1038/ncb2588

    CAS  Google Scholar 

  78. Pinaud F, Clarke S, Sittner A, Dahan M (2010) Probing cellular events, one quantum dot at a time. Nat Methods 7(4):275–285. doi:10.1038/nmeth.1444

    CAS  Google Scholar 

  79. Lin J, Countryman P, Buncher N, Kaur P, Longjiang E, Zhang Y, Gibson G, You C, Watkins SC, Piehler J, Opresko PL, Kad NM, Wang H (2013) TRF1 and TRF2 use different mechanisms to find telomeric DNA but share a novel mechanism to search for protein partners at telomeres. Nucleic Acids Res. doi:10.1093/nar/gkt1132

    Google Scholar 

  80. Roullier V, Clarke S, You C, Pinaud F, Gouzer GG, Schaible D, Marchi-Artzner V, Piehler J, Dahan M (2009) High-affinity labeling and tracking of individual histidine-tagged proteins in live cells using Ni2+ tris-nitrilotriacetic acid quantum dot conjugates. Nano Lett 9(3):1228–1234. doi:10.1021/nl9001298

    CAS  Google Scholar 

  81. You C, Wilmes S, Richter CP, Beutel O, Liße D, Piehler J (2012) Electrostatically Controlled Quantum Dot Monofunctionalization for Interrogating the Dynamics of Protein Complexes in Living Cells. ACS Chem Biol 8(2):320–326. doi:10.1021/cb300543t

    Google Scholar 

  82. Griffin BA, Adams SR, Tsien RY (1998) Specific Covalent Labeling of Recombinant Protein Molecules Inside Live Cells. Science 281(5374):269–272. doi:10.1126/science.281.5374.269

    CAS  Google Scholar 

  83. Gaietta G, Deerinck TJ, Adams SR, Bouwer J, Tour O, Laird DW, Sosinsky GE, Tsien RY, Ellisman MH (2002) Multicolor and Electron Microscopic Imaging of Connexin Trafficking. Science 296(5567):503–507. doi:10.1126/science.1068793

    CAS  Google Scholar 

  84. Adams SR, Campbell RE, Gross LA, Martin BR, Walkup GK, Yao Y, Llopis J, Tsien RY (2002) New Biarsenical Ligands and Tetracysteine Motifs for Protein Labeling in Vitro and in Vivo: Synthesis and Biological Applications. J Am Chem Soc 124(21):6063–6076. doi:10.1021/ja017687n

    CAS  Google Scholar 

  85. Tour O, Adams SR, Kerr RA, Meijer RM, Sejnowski TJ, Tsien RW, Tsien RY (2007) Calcium Green FlAsH as a genetically targeted small-molecule calcium indicator. Nat Chem Biol 3(7):423–431

    CAS  Google Scholar 

  86. Liu B, Archer CT, Burdine L, Gillette TG, Kodadek T (2007) Label Transfer Chemistry for the Characterization of Protein − Protein Interactions. J Am Chem Soc 129(41):12348–12349. doi:10.1021/ja072904r

    CAS  Google Scholar 

  87. Rutkowska A, Haering CH, Schultz C (2011) A FlAsH-Based Cross-Linker to Study Protein Interactions in Living Cells. Angew Chem Int Ed 50(52):12655–12658. doi:10.1002/anie.201106404

    CAS  Google Scholar 

  88. Tour O, Meijer RM, Zacharias DA, Adams SR, Tsien RY (2003) Genetically targeted chromophore-assisted light inactivation. Nat Biotech 21(12):1505–1508

    CAS  Google Scholar 

  89. Zhou Z, Cironi P, Lin AJ, Xu Y, Hrvatin S, Golan DE, Silver PA, Walsh CT, Yin J (2007) Genetically encoded short peptide tags for orthogonal protein labeling by Sfp and AcpS phosphopantetheinyl transferases. ACS Chem Biol 2(5):337–346. doi:10.1021/cb700054k

    CAS  Google Scholar 

  90. Yin J, Straight PD, McLoughlin SM, Zhou Z, Lin AJ, Golan DE, Kelleher NL, Kolter R, Walsh CT (2005) Genetically encoded short peptide tag for versatile protein labeling by Sfp phosphopantetheinyl transferase. Proc Natl Acad Sci U S A 102(44):15815–15820

    CAS  Google Scholar 

  91. Chen I, Howarth M, Lin W, Ting AY (2005) Site-specific labeling of cell surface proteins with biophysical probes using biotin ligase. Nat Meth 2(2):99–104

    CAS  Google Scholar 

  92. Fernandez-Suarez M, Baruah H, Martinez-Hernandez L, Xie KT, Baskin JM, Bertozzi CR, Ting AY (2007) Redirecting lipoic acid ligase for cell surface protein labeling with small-molecule probes. Nat Biotech 25(12):1483–1487. doi:10.1038/nbt1355

    CAS  Google Scholar 

  93. Popp MW, Antos JM, Grotenbreg GM, Spooner E, Ploegh HL (2007) Sortagging: a versatile method for protein labeling. Nat Chem Biol 3(11):707–708. doi:10.1038/nchembio.2007.31

    CAS  Google Scholar 

  94. Mero A, Ishino T, Chaiken I, Veronese F, Pasut G (2011) Multivalent and Flexible PEG-Nitrilotriacetic Acid Derivatives for Non-covalent Protein Pegylation. Pharm Res 28(10):2412–2421. doi:10.1007/s11095-011-0468-8

    CAS  Google Scholar 

  95. Janaratne TK, Okach L, Brock A, Lesley SA (2011) Solubilization of Native Integral Membrane Proteins in Aqueous Buffer by Noncovalent Chelation with Monomethoxy Poly(ethylene glycol) (mPEG) Polymers. Bioconjug Chem 22(8):1513–1518. doi:10.1021/bc200019x

    CAS  Google Scholar 

  96. June RK, Gogoi K, Eguchi A, Cui X-S, Dowdy SF (2010) Synthesis of a pH-Sensitive Nitrilotriacetic Linker to Peptide Transduction Domains To Enable Intracellular Delivery of Histidine Imidazole Ring-Containing Macromolecules. J Am Chem Soc 132(31):10680–10682. doi:10.1021/ja1040418

    CAS  Google Scholar 

  97. Platt V, Huang Z, Cao L, Tiffany M, Riviere K, Szoka FC (2010) Influence of Multivalent Nitrilotriacetic Acid Lipid − Ligand Affinity on the Circulation Half-Life in Mice of a Liposome-Attached His6-Protein. Bioconjug Chem 21(5):892–902. doi:10.1021/bc900448f

    CAS  Google Scholar 

  98. Tanner P, Ezhevskaya M, Nehring R, Van Doorslaer S, Meier W, Palivan C (2012) Specific His6-tag Attachment to Metal-Functionalized Polymersomes Relies on Molecular Recognition. J Phys Chem B 116(33):10113–10124. doi:10.1021/jp305544v

    CAS  Google Scholar 

  99. Pires MM, Chmielewski J (2009) Self-assembly of Collagen Peptides into Microflorettes via Metal Coordination. J Am Chem Soc 131(7):2706–2712. doi:10.1021/ja8088845

    CAS  Google Scholar 

  100. Pires MM, Ernenwein D, Chmielewski J (2011) Selective Decoration and Release of His-tagged Proteins from Metal-Assembled Collagen Peptide Microflorettes. Biomacromolecules 12(7):2429–2433. doi:10.1021/bm2004934

    CAS  Google Scholar 

  101. Jana B, Mondal G, Biswas A, Chakraborty I, Saha A, Kurkute P, Ghosh S (2013) Dual functionalized graphene oxide serves as a carrier for delivering oligohistidine- and biotin-tagged biomolecules into cells. Macromol Biosci 13(11):1478–1484. doi:10.1002/mabi.201300129

    CAS  Google Scholar 

  102. Arai S, Hirosawa S, Oguchi Y, Suzuki M, Murata A, Si I, Takeoka S (2012) Mass Spectrometric Screening of Ligands with Lower Off-Rate from a Clicked-Based Pooled Library. ACS Comb Sci 14(8):451–455. doi:10.1021/co300028n

    CAS  Google Scholar 

  103. Wegner SV, Spatz JP (2013) Cobalt(III) as a Stable and Inert Mediator Ion between NTA and His6-Tagged Proteins. Angew Chem Int Ed 52(29):7593–7596. doi:10.1002/anie.201210317

    CAS  Google Scholar 

  104. Endrizzi BJ, Huang G, Kiser PF, Stewart RJ (2006) Specific covalent immobilization of proteins through dityrosine cross-links. Langmuir 22(26):11305–11310

    CAS  Google Scholar 

  105. Tsukiji S, Miyagawa M, Takaoka Y, Tamura T, Hamachi I (2009) Ligand-directed tosyl chemistry for protein labeling in vivo. Nat Chem Biol 5(5):341–343

    CAS  Google Scholar 

  106. Uchinomiya S, Nonaka H, Wakayama S, Ojida A, Hamachi I (2013) In-cell covalent labeling of reactive His-tag fused proteins. Chem Commun 49(44):5022–5024. doi:10.1039/c3cc41979g

    CAS  Google Scholar 

  107. Uchinomiya S, Ojida A, Hamachi I (2013) Peptide Tag/Probe Pairs Based on the Coordination Chemistry for Protein Labeling. Inorg Chem. doi:10.1021/ic401612z

    Google Scholar 

  108. Gropeanu M, Bhagawati M, Gropeanu RA, Rodríguez Muñiz GM, Sundaram S, Piehler J, del Campo A (2013) A Versatile Toolbox for Multiplexed Protein Micropatterning by Laser Lithography. Small 9(6):838–845. doi:10.1002/smll.201201901

    CAS  Google Scholar 

Download references

Acknowledgments

This work is dedicated to Professor Dr Günter Gauglitz on the occasion of his 70th birthday.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob Piehler.

Additional information

This paper is dedicated to Professor Günter Gauglitz on the occasion of his 70th birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, C., Piehler, J. Multivalent chelators for spatially and temporally controlled protein functionalization. Anal Bioanal Chem 406, 3345–3357 (2014). https://doi.org/10.1007/s00216-014-7803-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-7803-y

Keywords

Navigation