Skip to main content
Log in

A homogeneous quenching resonance energy transfer assay for the kinetic analysis of the GTPase nucleotide exchange reaction

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A quenching resonance energy transfer (QRET) assay for small GTPase nucleotide exchange kinetic monitoring is demonstrated using nanomolar protein concentrations. Small GTPases are central signaling proteins in all eukaryotic cells acting as a “molecular switches” that are active in the GTP-state and inactive in the GDP-state. GTP-loading is highly regulated by guanine nucleotide exchange factors (GEFs). In several diseases, most prominently cancer, this process in misregulated. The kinetics of the nucleotide exchange reaction reports on the enzymatic activity of the GEF reaction system and is, therefore, of special interest. We determined the nucleotide exchange kinetics using europium-labeled GTP (Eu-GTP) in the QRET assay for small GTPases. After GEF catalyzed GTP-loading of a GTPase, a high time-resolved luminescence signal was found to be associated with GTPase bound Eu-GTP, whereas the non-bound Eu-GTP fraction was quenched by soluble quencher. The association kinetics of the Eu-GTP was measured after GEF addition, whereas the dissociation kinetics could be determined after addition of unlabeled GTP. The resulting association and dissociation rates were in agreement with previously published values for H-RasWt, H-RasQ61G, and K-RasWt, respectively. The broader applicability of the QRET assay for small GTPases was demonstrated by determining the kinetics of the Ect2 catalyzed RhoAWt GTP-loading. The QRET assay allows the use of nanomolar protein concentrations, as more than 3-fold signal-to-background ratio was achieved with 50 nM GTPase and GEF proteins. Thus, small GTPase exchange kinetics can be efficiently determined in a HTS compatible 384-well plate format.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ACN:

Acetonitrile

AHC-spacer:

Aminohexylcarbamoyl-spacer

CV%:

Coefficient of variation

EDTA:

Ethylenediaminetetraacetic acid

GAP:

GTPase-activating protein

GDP:

Guanosine diphosphate

GEF:

Guanine nucleotide exchange factor

Gln:

Glutamine

Gly:

Glycine

GTP:

Guanosine triphosphate

HTS:

High throughput screening

ITMS:

Ion trap mass spectrometer

Kd :

Dissociation constant

kobs :

Observed association rate

koff :

Dissociation rate

kon :

Association rate

Ln3+ :

Lanthanide

LOD:

Limit-of-detection

mant:

Methylanthraniloyl

NMR:

Nuclear magnetic resonance

Q2:

Quench II

QRET:

Quenching resonance energy transfer

S/B:

Signal-to-background ratio

SD:

Standard deviation

TEAAc:

Triethylamine acetic acid

TRL:

Time-resolved luminescence

References

  1. Vetter IR, Wittinghofer A (2001) The guanine nucleotide-binding switch in three dimensions. Science 294:1299–1304

    Article  CAS  Google Scholar 

  2. Colicelli J (2004) Human RAS superfamily proteins and related GTPases. Sci STKE 2004:re13

  3. Wennerberg K, Rossman KL, Der CJ (2005) The Ras superfamily at a glance. J Cell Sci 118:843–846

    Article  CAS  Google Scholar 

  4. Buday L, Downward J (2008) Many faces of Ras activation. Biochim Biophys Acta 1786:178–187

    CAS  Google Scholar 

  5. Wittinghofer A, Scheffzek K, Ahmadian MR (1997) The interaction of Ras with GTPase-activating proteins. FEBS Lett 410:63–67

    Article  CAS  Google Scholar 

  6. Fernandez-Medarde A, Santos E (2011) Ras in cancer and developmental diseases. Gene Cancer 2:344–358

    Article  CAS  Google Scholar 

  7. Prior IA, Lewis PD, Mattos C (2012) A comprehensive survey of Ras mutations in cancer. Cancer Res 72:2457–2467

    Article  CAS  Google Scholar 

  8. Tanaka T, Rabbitts TH (2010) Interfering with RAS–effector protein interactions prevent RAS-dependent tumor initiation and causes stop–start control of cancer growth. Oncogene 29:6064–6070

    Article  CAS  Google Scholar 

  9. Baines AT, Xu D, Der CJ (2011) Inhibition of Ras for cancer treatment: the search continues. Futur Med Chem 3:1787–1808

    Article  CAS  Google Scholar 

  10. Gibbs JB, Schaber MD, Marshall MS, Scolnick EM, Sigal IS (1987) Identification of guanine nucleotides bound to Ras-encoded proteins in growing yeast cells. J Biol Chem 262:10426–10429

    CAS  Google Scholar 

  11. Rojas RJ, Kimple R, Rossman K, Siderovski D, Sondek J (2003) Established and emerging fluorescence-based assays for G-protein function: Ras-superfamily GTPases. Comb Chem High Throughput Screen 6:409–418

    Article  CAS  Google Scholar 

  12. Vuojola J, Lamminmäki U, Soukka T (2009) Resonance energy transfer from lanthanide chelates to overlapping and nonoverlapping fluorescent protein acceptors. Anal Chem 81:5033–5038

    Article  CAS  Google Scholar 

  13. Spangler C, Spangler CM, Spoerner M, Schäferling M (2009) Kinetic determination of the GTPase activity of Ras proteins by means of a luminescent terbium complex. Anal Bioanal Chem 394:989–996

    Article  CAS  Google Scholar 

  14. Mazhab-Jahari T, Marshall CB, Smith M, Gasmi-Seabrook GMC, Stambolic V, Rottapel R, Neel BG, Ikura M (2010) Real-time NMR study of three small GTPases reveals that fluorescent 2′(3′)-O-(N-methylanthraniloyl)-tagged nucleotides alter hydrolysis and exchange kinetics. J Biol Chem 285:5132–5136

    Article  Google Scholar 

  15. Martikkala E, Veltel S, Kirjavainen J, Rozwandowicz-Jansen A, Lammminmäki U, Hänninen P, Härmä H (2011) Homogeneous single-label biochemical Ras activation assay using time-resolved luminescence. Anal Chem 83:9230–9233

    Article  CAS  Google Scholar 

  16. Ahmadian MR, Wittinghofer A, Herrmann C (2002) Fluorescence methods in the study of small GTP-binding proteins. Methods Mol Biol 189:45–63

    CAS  Google Scholar 

  17. Marshall CB, Ho J, Buerger C, Plevin MJ, Li GY, Li Z, Ikura M, Stambolic V (2009) Characterization of the intrinsic and TSC2-GAP-regulated GTPase activity of Rheb by real-time NMR. Sci Signal 2:ra3

    Google Scholar 

  18. Härmä H, Rozwandowicz-Jansen A, Martikkala E, Frang H, Hemmilä I, Sahlberg N, Fey V, Perälä M, Hänninen P (2009) A new simple cell-based homogeneous time-resolved fluorescence QRET technique for receptor–ligand interaction screening. J Biomol Screen 14:936–943

    Article  Google Scholar 

  19. Kopra K, Shweta ME, Hänninen P, Petäjä-Repo U, Härmä H (2013) A homogeneous single-label quenching resonance energy transfer assay for a δ-opioid receptor-ligand using intact cells. Analyst 138:4907–4914

    Article  CAS  Google Scholar 

  20. Kopra K, Syrjänpää M, Hänninen P, Härmä H (2014) Noncompetitive aptamer-based quenching resonance energy transfer assay for homogeneous growth factor quantification. doi:10.1039/c3an01814h

  21. Wang Q, Nchini Nono K, Syrjänpää M, Charboniere LJ, Hovinen J, Härmä H (2013) Stable and highly fluorescent europium(III) chelates for time-resolved immunoassays. Inorg Chem 52:8461–8466

    Article  CAS  Google Scholar 

  22. Chie L, Chung D, Pincus MR (2005) Specificity of inhibition of Ras-p21 signal transduction by peptides from GTPase activating protein (GAP) and son-of-sevenless (SOS) Ras-specific guanine nucleotide exchange protein. Protein J 24:253–258

    Article  CAS  Google Scholar 

  23. Hemmilä I, Dakubu S, Mukkala VM, Siitari H, Lövgren T (1984) Europium as a label in time-resolved immunofluorometric assays. Anal Biochem 137:335–343

    Article  Google Scholar 

  24. Guo Z, Ahmadian MR, Goody RS (2005) Guanine nucleotide exchange factors operate by a simple allosteric competitive mechanism. Biochemistry 44:15423–15429

    Article  CAS  Google Scholar 

  25. Burstein ES, Macara IG (1992) Interactions of the Ras-like protein p25rab3A with Mg2+ and guanine nucleotides. Biochem J 282:387–392

    CAS  Google Scholar 

  26. John J, Rensland H, Schlichting I, Vetter I, Borasio GD, Goody RS, Wittinghofer A (1993) Kinetic and structural analysis of the Mg(2+)-binding site of the guanine nucleotide-binding protein p21H-Ras. J Biol Chem 268:923–929

    CAS  Google Scholar 

  27. Zhang B, Zhang Y, Wang ZX, Zheng Y (2000) The role of Mg2+ cofactor in the guanine nucleotide exchange and GTP hydrolysis reactions of Rho family GTP-binding proteins. J Biol Chem 275:25299–25307

    Article  CAS  Google Scholar 

  28. John J, Sohmen R, Feuerstein J, Linke R, Wittinghofer A, Goody RS (1990) Kinetics of interaction of nucleotides with nucleotide-free H-Ras p21. Biochemistry 29:6058–6065

    Article  CAS  Google Scholar 

  29. Der CJ, Pan BT, Cooper GM (1986) RasH mutants deficient in GTP binding. Mol Cell Biol 6:3291–3294

    CAS  Google Scholar 

  30. Ford B, Hornak V, Kleinman H, Nassar N (2006) Structure of a transient intermediate for GTP hydrolysis by Ras. Structure 14:427–436

    Article  CAS  Google Scholar 

  31. Buhrman G, O’Connor C, Zerbe B, Kearney BM, Napoleon R, Kovrigina EA, Vajda S, Kozakov D, Kovrigin EL, Mattos C (2011) Analysis of binding site hot spots on the surface of Ras GTPase. J Mol Biol 413:773–789

    Article  CAS  Google Scholar 

  32. Zong H, Kaibuchi K, Quilliam LA (2001) The insert region of RhoA is essential for Rho kinase activation and cellular transformation. Mol Cell Biol 21:5287–5298

    Article  CAS  Google Scholar 

  33. Pertz O (2010) Spatio-temporal Rho GTPase signaling - where are we now? J Cell Sci 123:1841–1850

    Article  CAS  Google Scholar 

  34. Gureasko J, Galush WJ, Boykevisch S, Sondermann H, Bar-Sagi D, Groves JT, Kuriyan J (2008) Membrane-dependent signal integration by the Ras activator Son of Sevenless. Nat Struct Mol Biol 15:452–461

    Article  CAS  Google Scholar 

  35. Lenzen C, Cool RH, Prinz H, Kuhlmann J, Wittinghofer A (1998) Kinetic analysis by fluorescence of the interaction between Ras and the catalytic domain of the guanine nucleotide exchange factor Cdc25Mm. Biochemistry 37:7420–7430

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Academy of Finland (138584), FP7 Collaborative Project, NANOGNOSTICS (HEALT-F5-2009-242264), Feodor Lynen Return Fellowship from the Alexander von Humboldt-foundation, and the National Doctoral program in Informational and Structural Biology.

The authors declare the following competing financial interest(s): Harri Härmä has commercial interest to the Quench II molecule through QRET Technologies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kari Kopra.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1.53 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kopra, K., Ligabue, A., Wang, Q. et al. A homogeneous quenching resonance energy transfer assay for the kinetic analysis of the GTPase nucleotide exchange reaction. Anal Bioanal Chem 406, 4147–4156 (2014). https://doi.org/10.1007/s00216-014-7795-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-7795-7

Keywords

Navigation