Skip to main content
Log in

Toward high spatial resolution sampling and characterization of biological tissue surfaces using mass spectrometry

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Mass spectrometry has emerged as a powerful tool for the bioanalytical sciences because of its ability to characterize small and large biomolecules in vanishingly small amounts. A recurring motif in mass spectrometry aims to decipher the chemical composition of biological samples at the molecular level, requiring drastic improvements in the ability to interrogate well defined and highly spatially resolved areas of a sample surface. With the growth of novel ionization methods, numerous advances have been made in sampling biological tissue surfaces. Here, current advancements in ambient, inlet, and vacuum ionization methods are discussed with respect to the potential improvements in the goal of achieving high spatial resolution and/or fast surface analysis. Of similar importance is the need for improvements in applicable characterization strategies using high performance fragmentation technologies such as electron transfer dissociation and electron capture dissociation directly from surfaces, and gas-phase separation through ion mobility spectrometry and high resolution mass spectrometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Tanaka K, Waki H, Ido Y, Akita S, Yoshida Y, Yoshida T (1988) Protein and polymer analysis up to m/z 100,000 by laser ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 2:151–153

    Article  CAS  Google Scholar 

  2. Karas M, Hillenkamp F (1988) Laser desorption ionization of proteins with molecular masses exceeding 10,000 Daltons. Anal Chem 60:2299–2301

    Article  CAS  Google Scholar 

  3. Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246:64–71

    Article  CAS  Google Scholar 

  4. Venter AR, Douglass KA, Shelley JT, Hasman G, Honarvar E (2014) Mechanisms of real-time, proximal sample processing during ambient ionization mass spectrometry. Anal Chem 86:233–249

    Article  CAS  Google Scholar 

  5. Fletcher JS, Lockyer NP, Vaidyanathan S, Vickerman JC (2007) TOF-SIMS 3D biomolecular imaging of Xenopus laevis oocytes using Buckminsterfullerene (C60) primary ions. Anal Chem 79:2199–2206

    Article  CAS  Google Scholar 

  6. Caprioli RM, Farmer TB, Gile J (1997) Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF-MS. Anal Chem 69:4751–4760

    Article  CAS  Google Scholar 

  7. Nemes P, Vertes A (2007) Laser ablation electrospray ionization for atmospheric pressure, in vivo, and imaging mass spectrometry. Anal Chem 79:8098–8106

    Article  CAS  Google Scholar 

  8. Inutan ED, Richards AL, Wager-Miller J, Mackie K, McEwen CN, Trimpin S (2011) Laserspray ionization, a new method for protein analysis directly from tissue at atmospheric pressure with ultrahigh mass resolution and electron transfer dissociation. Mol Cell Proteom 10(2) doi:10.1074/mcp.M110.000760

  9. Venter A, Nefliu M, Cooks RG (2008) Ambient desorption ionization mass spectrometry. Trends Anal Chem 27:284–290

    Article  CAS  Google Scholar 

  10. Trimpin S, Wang B, Lietz CB, Marshall DD, Richards AL, Inutan ED (2013) New ionization processes and applications for use in mass spectrometry. Crit Rev Biochem Mol Biol 48:409–429

    Article  CAS  Google Scholar 

  11. Coon JJ (2009) Collisions or electrons? Protein sequence analysis in the 21st century. Anal Chem 81:3208–3215

    Article  CAS  Google Scholar 

  12. Clemmer DE, Jarrold MF (1997) Ion mobility measurements and their applications to clusters and biomolecules. J Mass Spectrom 32:577–592

    Article  CAS  Google Scholar 

  13. Brown A, Vickerman JC (1984) Static SIMS for applied surface-analysis. Surf Interface Anal 6:1–14

    Article  CAS  Google Scholar 

  14. Piehowski PD, Kurczy ME, Willingham D, Parry S, Heien ML, Winograd N, Ewing AG (2008) Freeze-etching and vapor matrix deposition for ToF-SIMS imaging of single cells. Langmuir 24:7906–7911

    Article  CAS  Google Scholar 

  15. Aoyagi S, Fletcher JS, Sheraz S, Kawashima T, Raso IB, Henderson A, Lockyer NP, Vickerman JC (2013) Peptide structural analysis using continuous Ar cluster and C60 ion beams. Anal Bioanal Chem 405:6621–6628

    Article  CAS  Google Scholar 

  16. Barber M, Bordoli RS, Sedgewick RD, Tyler AN (1981) Fast atom bombardment of solids as an ion-source in mass-spectrometry. Nature 293:270–275

    Article  CAS  Google Scholar 

  17. Barber M, Green BN (1987) The analysis of small proteins in the molecular weight range 10–24 kDa by magnetic sector mass spectrometry. Rapid Commun Mass Spectrom 1(5):80–83

    Article  CAS  Google Scholar 

  18. Vertes A, Balazs L, Gijbels R (1990) Matrix-assisted laser desorption of peptides in transmission geometry. Rapid Commun Mass Spectrom 4:263–266

    Article  CAS  Google Scholar 

  19. Kaufmann R, Hillenkamp F, Wechsung R (1979) Laser microprobe mass analyzer (LAMMA)—new instrument for biomedical microprobe analysis. Med Prog Technol 6:109–121

    CAS  Google Scholar 

  20. Norris JL, Caprioli RM (2013) Analysis of tissue specimens by matrix-assisted laser desorption/ionization imaging mass spectrometry in biological and clinical research. Chem Rev 113:2309–2342

    Article  CAS  Google Scholar 

  21. Zavalin A, Todd EM, Rawhouser PD, Yang J, Norris JL, Caprioli RM (2012) Direct imaging of single cells and tissue at subcellular spatial resolution using transmission geometry MALDI MS. J Mass Spectrom 47:1473–1481

    Article  Google Scholar 

  22. Schober Y, Guenther S, Spengler B, Roempp A (2012) Single cell matrix-assisted laser desorption/ionization mass spectrometry imaging. Anal Chem 84:6293–6297

    Article  CAS  Google Scholar 

  23. Li Y, Shrestha B, Vertes A (2008) Atmospheric pressure infrared MALDI imaging mass spectrometry of plant metabolomics. Anal Chem 80:407–420

    Article  CAS  Google Scholar 

  24. Vestal ML (2009) Modern MALDI time-of-flight mass spectrometry. J Mass Spectrom 44:303–317

    Article  CAS  Google Scholar 

  25. Angel TE, Aryal UK, Hengel SM, Baker ES, Kelly RT, Robinson EW, Smith RD (2012) Mass spectrometry-based proteomics: existing capabilities and future directions. Chem Soc Rev 41:3912–3928

    Article  CAS  Google Scholar 

  26. Takats Z, Wiseman JM, Gologan B, Cooks RG (2004) Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science 306:471–473

    Article  CAS  Google Scholar 

  27. Eberlin LS, Norton I, Dill AL, Golby AJ, Ligon KL, Santagata S, Cooks RG, Agar NYR (2012) Classifying human brain tumors by lipid imaging with mass spectrometry. Cancer Res 72:645–654

    Article  CAS  Google Scholar 

  28. Kertesz V, Van Berkel GJ, Vavrek M, Koeplinger KA, Schneider BB, Covey TR (2008) Comparison of drug distribution images from whole-body thin tissue sections obtained using desorption electrospray ionization tandem mass spectrometry and autoradiography. Anal Chem 80:5168–5177

    Article  CAS  Google Scholar 

  29. Campbell DI, Ferreira CR, Eberlin LS, Cooks RG (2012) Improved spatial resolution in the imaging of biological tissue using desorption electrospray ionization. Anal Bioanal Chem 404:389–398

    Article  CAS  Google Scholar 

  30. Wu CP, Dill AL, Eberlin LS, Cooks RG, Ifa DR (2013) Mass spectrometry imaging under ambient conditions. Mass Spectrom Rev 32:218–243

    Article  CAS  Google Scholar 

  31. Lanekoff I, Heath BS, Liyu A, Thomas M, Carson JP, Laskin J (2012) Automated platform for high-resolution tissue imaging using nanospray desorption electrospray ionization mass spectrometry. Anal Chem 84:8351–8356

    Article  CAS  Google Scholar 

  32. Shiea J, Huang MZ, Hsu HJ, Lee CY, Yuan CH, Beech I, Sunner J (2005) Electrospray-assisted laser desorption/ionization mass spectrometry for direct ambient analysis of solids. Rapid Commun Mass Spectrom 19:3701–3704

    Article  CAS  Google Scholar 

  33. Huang MZ, Chang SC, Jhang SS, Chou CC, Cheng CN, Shiea J, Popov IA, Nikolaev EN (2012) Ambient molecular imaging of dry fungus surface by electrospray laser desorption ionization mass spectrometry. Int J Mass Spectrom 325(327):172–182

    Article  Google Scholar 

  34. Sampson JS, Hawkridge AM, Muddiman DC (2006) Generation and detection of multiply-charged peptide and proteins by matrix-assisted laser desorption electrospray ionization Fourier Transform ion cyclotron resonance mass spectrometry. J Am Soc Mass Spectrom 17:1712–1716

    Article  CAS  Google Scholar 

  35. Robichaud G, Barry JA, Garrard KP, Muddimann DC (2013) Infrared matrix-assisted laser-desorption electrospray ionization (IR-MALDESI) imaging source coupled to a FT-ICR mass spectrometer. J Am Soc Mass Spectrom 24:92–100

    Article  CAS  Google Scholar 

  36. Shrestha B, Javonillo R, Burns JR, Pirger Z, Vertes A (2013) Comparative local analysis of metabolites, lipids, and proteins in intact fish tissues by LAESI mass spectrometry. Analyst 138:3444–3449

    Article  CAS  Google Scholar 

  37. Shrestha B, Vertes A (2010) Direct analysis of single cells by mass spectrometry at atmospheric pressure. J Vis Exp 43:1–4

    Google Scholar 

  38. Smith JW, Siegel EE, Maze JT, Jarrold MF (2011) Image charge detection mass spectrometry: pushing the envelope with sensitivity and accuracy. Anal Chem 83:950–956

    Article  CAS  Google Scholar 

  39. Contino NC, Pierson EE, Keifer DZ, Jarrold MF (2013) Charge detection mass spectrometry with resolved charge states. J Am Soc Mass Spectrom 24:101–108

    Article  CAS  Google Scholar 

  40. Park J, Qin H, Scalf M, Hilger RT, Westphall MS, Smith LM, Blick RH (2011) A mechanical nanomembrane detector for time-of-flight mass spectrometry. Nano Lett 11:3681–3684

    Article  CAS  Google Scholar 

  41. Jungmann J, Smith DF, MacAleese L, Klinkert I, Visser J, Heeren RMA (2012) Biological tissue imaging with a position and time sensitive pixelated detector. J Am Soc Mass Spectrom 23:1679–1688

    Article  CAS  Google Scholar 

  42. Spraggins JM, Caprioli RM (2011) High-speed MALDI-TOF imaging mass spectrometry: rapid ion image acquisition and considerations for next generation instrumentation. J Am Soc Mass Spectrom 22:1022–1031

    Article  CAS  Google Scholar 

  43. Tsai MT, Lee S, Lu IC, Chu KY, Liang CW, Lee CH, Lee YT, Ni CK (2013) Ion-to-neutral ratio of 2,5-dihydroxybenzoic acid in matrix assisted laser desorption/ionization. Rapid Commun Mass Spectrom 27:955–963

    Article  CAS  Google Scholar 

  44. Trimpin S, Herath TN, Inutan ED, Wager-Miller J, Kowalski P, Claude E, Walker JM, Mackie J (2010) Automated solvent-free matrix deposition for tissue imaging by mass spectrometry. Anal Chem 82:359–367

    Google Scholar 

  45. Trimpin S, Inutan ED, Herath TN, McEwen CN (2010) Laserspray ionization, a new atmospheric pressure MALDI method for producing highly charged gas-phase ions of peptides and proteins directly from solid solutions. Mol Cell Proteom 9:362–367

    Article  CAS  Google Scholar 

  46. Inutan ED, Wager-Miller J, Mackie K, Trimpin S (2012) Laserspray ionization imaging of multiply charged ions using a commercial vacuum MALDI ion source. Anal Chem 84:9079–9084

    CAS  Google Scholar 

  47. Inutan ED, Wang B, Trimpin S (2011) Commercial intermediate pressure MALDI ion mobility spectrometry mass spectrometer capable of producing highly charged laserspray ionization ions. Anal Chem 83:678–684

    Article  CAS  Google Scholar 

  48. Inutan ED, Wager-Miller J, Narayan SB, Mackie K, Trimpin S (2013) The potential for clinical applications using a new ionization method combined with ion mobility spectrometry-mass spectrometry. Int J Ion Mobil Spectrom 16:145–159

    Article  CAS  Google Scholar 

  49. Trimpin S, Wang B, Inutan B, Li J, Lietz CB, Harron A, Pagnotti VS, Sardelis D, McEwen CN (2012) A mechanism for ionization of nonvolatile compounds in mass spectrometry: considerations from MALDI and inlet ionization. J Am Soc Mass Spectrom 23:1644–1660

    Article  CAS  Google Scholar 

  50. Trimpin S, Inutan ED, Herath TN, McEwen CN (2010) A matrix-assisted laser desorption/ionization mass spectrometry method for selectively producing either singly or multiply charged molecular ions. Anal Chem 82:11–15

    Article  CAS  Google Scholar 

  51. McEwen CN, Larsen BS, Trimpin S (2010) Laserspray ionization on a commercial atmospheric pressure-MALDI mass spectrometer ion source: selecting singly or multiply charged ions. Anal Chem 82:4998–5001

    Article  CAS  Google Scholar 

  52. Richards AL, Lietz CB, Wager-Millar JB, Mackie K, Trimpin S (2011) Imaging mass spectrometry in transmission geometry. Rapid Commun Mass Spectrom 25:815–820

    Article  CAS  Google Scholar 

  53. Richards AL, Lietz CB, Wager-Miller J, Mackie K, Trimpin S (2012) Localization and imaging of gangliosides in mouse brain tissue sections by laserspray ionization inlet. J Lipid Res 53:1390–1398

    Article  CAS  Google Scholar 

  54. Inutan ED, Trimpin S (2010) Laserspray ionization-ion mobility spectrometry-mass spectrometry: Baseline separation of isometric amyloids without the use of solvents desorbed and ionized directly from a surface. J Proteome Res 9:6077–61081

    Google Scholar 

  55. Silveira JA, Fort KL, Kim D, Servage KA, Pierson NA, Clemmer DE, Russell DH (2013) From solution to the gas phase: stepwise dehydration and kinetic trapping of substance p reveals the origin of peptide conformations. J Am Chem Soc 135:19147–19153

    Article  CAS  Google Scholar 

  56. McEwen CN, Pagnotti VS, Inutan ED, Trimpin S (2010) New paradigm in ionization: multiply charged ion formation from a solid matrix without a laser or voltage. Anal Chem 82:9164–9168

    Article  CAS  Google Scholar 

  57. Zenobi R, Knochenmuss R (1998) Ion formation in MALDI mass spectrometry. Mass Spectrom Rev 17:337–366

    Article  CAS  Google Scholar 

  58. Li J, Inutan ED, Wang B, Lietz CB, Green DR, Manly CD, Richards AL, Marshall DD, Lingenfelter S, Ren Y, Trimpin S (2012) Matrix assisted ionization: new aromatic and nonaromatic matrix compounds producing multiply charged lipid, peptide and protein ions in the positive and negative mode observed directly from surfaces. J Am Soc Mass Spectrom 23:1625–1643

    Article  CAS  Google Scholar 

  59. Harron AF, Hoang K, McEwen CN (2013) High mass resolution tissue imaging at atmospheric pressure using laserspray ionization mass spectrometry. Int J Mass Spectrom 352:65–69

    Article  CAS  Google Scholar 

  60. Nyadong L, Inutan ED, Wang X, Hendrickson CL, Trimpin S, Marshall AG (2013) Laserspray and matrix-assisted ionization inlet coupled to high-field FT-ICR mass spectrometry for peptide and protein analysis. J Am Soc Mass Spectrom 24:320–328

    Article  CAS  Google Scholar 

  61. Inutan ED, Trimpin S (2010) Laserspray ionization (LSI) ion mobility spectrometry (IMS) mass spectrometry. J Am Soc Mass Spectrom 21:1260–1264

    Article  CAS  Google Scholar 

  62. Pagnotti VS, Chubatyi ND, McEwen CN (2011) Solvent assisted inlet ionization: an ultrasensitive new liquid introduction ionization method for mass spectrometry. Anal Chem 83:3981–3985

    Article  CAS  Google Scholar 

  63. Trimpin S, Ren Y, Wang B, Lietz CB, Richards AL, Marshall DD, Inutan ED (2011) Extending the laserspray ionization concept to produce highly charged ions at high vacuum on a time-of-flight mass analyzer. Anal Chem 83:5469–5475

    Article  CAS  Google Scholar 

  64. Inutan ED, Trimpin S (2013) Matrix assisted ionization vacuum (MAIV), a new ionization method for biological materials analysis using mass spectrometry. Mol Cell Proteomics 12:792–796

    Article  CAS  Google Scholar 

  65. Trimpin S, Inutan ED (2012) Matrix assisted ionization in vacuum, a sensitive and widely applicable ionization method for mass spectrometry. J Am Soc Mass Spectrom 24:722–732

    Article  Google Scholar 

  66. Trimpin S, Inutan ED (2013) New ionization method for analysis on atmospheric pressure ionization mass spectrometers requiring only vacuum and matrix assistance. Anal Chem 85:2005–2009

    Article  CAS  Google Scholar 

  67. Mitchell J Jr, Deveraux HD (1978) Determination of traces of organic compounds in the atmosphere: role of detectors in gas chromatography. Anal Chim Acta 100:45–52

    Article  CAS  Google Scholar 

  68. Sweeting LM, Cashel ML, Rosenblatt MM (1992) Triboluminescence spectra of organic crystals are sensitive to conditions of acquisition. J Lumin 52:281–291

    Article  CAS  Google Scholar 

  69. Sweeting LM (2001) Triboluminescence with and without air. Chem Mater 13:854–870

    Article  CAS  Google Scholar 

  70. Trimpin S, Herath TN, Inutan ED, Cernat SA, Miller JB, Mackie K, Walker JM (2009) Field-free transmission geometry atmospheric pressure matrix-assisted laser desorption/ionization for rapid analysis of unadulterated tissue samples. Rapid Commun Mass Spectrom 23:3023–3027

    Article  CAS  Google Scholar 

  71. Chakrabarty S, Pagnotti VS, Inutan ED, Trimpin S, McEwen CN (2013) A new matrix assisted ionization method for the analysis of volatile and nonvolatile compounds by atmospheric pressure probe mass spectrometry. J Am Soc Mass Spectrom 24:1102–1107

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for funding and support from NSF CAREER Award 0955975, ASMS Research Award, DuPont Young Professor Award, Waters Center of Innovation Award, and Eli Lilly Young Investigator Award in Analytical Chemistry (to S.T.), and Wayne State University (Schaap and Rumble Dissertation Fellowships to both B.W. and E.D.I. as well as Schaap Faculty Scholar to S.T.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Trimpin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Baba, T.J., Lutomski, C.A., Wang, B. et al. Toward high spatial resolution sampling and characterization of biological tissue surfaces using mass spectrometry. Anal Bioanal Chem 406, 4053–4061 (2014). https://doi.org/10.1007/s00216-014-7778-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-7778-8

Keywords

Navigation