Skip to main content
Log in

Paper-based three-dimensional microfluidic device for monitoring of heavy metals with a camera cell phone

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A 3D paper-based microfluidic device has been developed for colorimetric determination of selected heavy metals in water samples by stacking layers of wax patterned paper and double-sided adhesive tape. It has the capability of wicking fluids and distributing microliter volumes of samples from single inlet into affrays of detection zones without external pumps, thus a range of metal assays can be simply and inexpensively performed. We demonstrate a prototype of four sample inlets for up to four heavy metal assays each, with detection limits as follows: Cu (II) = 0.29 ppm, Ni(II) = 0.33 ppm, Cd (II) = 0.19 ppm, and Cr (VI) = 0.35 ppm, which provided quantitative data that were in agreement with values gained from atomic absorption. It has the ability to identify these four metals in mixtures and is immune to interferences from either nontoxic metal ions such as Na(I) and K(I) or components found in reservoir or beach water. With the incorporation of a portable detector, a camera mobile phone, this 3D paper-based microfluidic device should be useful as a simple, rapid, and on-site screening approach of heavy metals in aquatic environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Matés JM, Segura JA, Alonso FJ, Márquez J (2010) Roles of dioxins and heavy metals in cancer and neurological diseases using ROS-mediated mechanisms. Free Radic Biol Med 49(9):1328–1341

    Article  CAS  Google Scholar 

  2. Jomova K, Valko M (2011) Advances in metal-induced oxidative stress and human disease. Toxicology 283(2):65–87

    Article  CAS  Google Scholar 

  3. Boyd RS (2010) Heavy metal pollutants and chemical ecology: exploring new frontiers. J Chem Ecol 36(1):46–58

    Article  CAS  Google Scholar 

  4. Johri N, Jacquillet G, Unwin R (2010) Heavy metal poisoning: the effects of cadmium on the kidney. Biometals 23(5):783–792

    Article  CAS  Google Scholar 

  5. Lemos VA, Carvalho AL (2010) Determination of cadmium and lead in human biological samples by spectrometric techniques: a review. Environ Monit Assess 171(1–4):255–265

    Article  CAS  Google Scholar 

  6. Butcher DJ (2010) Advances in inductively coupled plasma optical emission spectrometry for environmental analysis. Instrum Sci Technol 38(6):458–469

    Article  CAS  Google Scholar 

  7. Feldmann J, Salaün P, Lombi E (2009) Critical review perspective: elemental speciation analysis methods in environmental chemistry—moving towards methodological integration. Environ Chem 6(4):275–289

    Article  CAS  Google Scholar 

  8. Abulhassani J, Manzoori JL, Amjadi M (2010) Hollow fiber based-liquid phase microextraction using ionic liquid solvent for preconcentration of lead and nickel from environmental and biological samples prior to determination by electrothermal atomic absorption spectrometry. J Hazard Mater 176(1):481–486

    Article  CAS  Google Scholar 

  9. Duan B, Yuan B, Lu S (2008) Rapid-determination of the heavy metal chromium (VI) in water by test paper. Ind Water Treat 28(10):68–70

    CAS  Google Scholar 

  10. Apilux A, Dungchai W, Siangproh W, Praphairaksit N, Henry CS, Chailapakul O (2010) Lab-on-paper with dual electrochemical/colorimetric detection for simultaneous determination of gold and iron. Anal Chem 82(5):1727–1732

    Article  CAS  Google Scholar 

  11. Hossain SZ, Brennan JD (2011) β-Galactosidase-based colorimetric paper sensor for determination of heavy metals. Anal Chem 83(22):8772–8778

    Article  CAS  Google Scholar 

  12. Mentele MM, Cunningham J, Koehler K, Volckens J, Henry CS (2012) Microfluidic paper-based analytical device for particulate metals. Anal Chem 84:4474–4480

    Article  CAS  Google Scholar 

  13. Feng L, Li H, Niu LY, Guan YS, Duan CF, Guan YF, Tung CH, Yang QZ (2013) A fluorometric paper-based sensor array for the discrimination of heavy-metal ions. Talanta 108:103–108

    Article  CAS  Google Scholar 

  14. Feng L, Li X, Li H, Yang W, Chen L, Guan YF (2013) Enhancement of sensitivity of paper-based sensor array for the identification of heavy-metal ions. Anal Chim Acta 780:74–80

    Article  CAS  Google Scholar 

  15. Martinez AW, Phillips ST, Whitesides GM (2010) Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal Chem 82:3–10

    Article  CAS  Google Scholar 

  16. Lisowski P, Zarzycki PK (2013) Microfluidic paper-based analytical device (μPADs) and micro analysis system (μTAS): Development, applications and future trends. Chromatographia 76:1201–1214

    Article  CAS  Google Scholar 

  17. Martinez AW, Phillips ST, Whitesides GM (2008) Three-dimensional microfluidic devices fabricated in layered paper and tape. PNAS 105(50):19606–19611

    Article  Google Scholar 

  18. Liu H, Crook RM (2011) Three-dimensional paper microfluidic devices assembled using the principles of origami. J Am Chem Soc 133:17564–17566

    Article  CAS  Google Scholar 

  19. Alves-Segundo R, Ibañez-Garcia N, Baeza M, Puyol M, Alonso-Chamarro J (2011) Towards a monolithically integrated microsystem based on the green tape ceramics technology for spectrophotometric measurements, Determination of chromium (VI) in water. Microchim Acta 172(1–2):225–232

    Article  CAS  Google Scholar 

  20. Greenwood PA, Greenway GM (2005) Analysis of toxic metals by micro total analytical systems (μTAS) with chemiluminescence. Environmental Chemistry, Springer Berlin Heidelberg, pp 13–18

    Google Scholar 

  21. Zou Z, Jang A, MacKnight ET, Wu PM, Do J, Shim JS, Ahn CH (2009) An on-site heavy metal analyzer with polymer lab-on-a-chips for continuous sampling and monitoring. IEEE Sens J 9(5):586–594

    Article  CAS  Google Scholar 

  22. Liu B, Zhang Y, Mayer D, Krause HJ, Jin Q, Zhao J, Offenhäusser A (2011) A simplified poly (dimethylsiloxane) capillary electrophoresis microchip integrated with a low noise contactless conductivity detector. Electrophoresis 32(6–7):699–704

    Article  CAS  Google Scholar 

  23. Chen X, Liu C, Xu Z, Pan Y, Liu J, Du L (2013) An effective PDMS microfluidic chip for chemiluminescence detection of cobalt (II) in water. Microsyst Technol 19(1):99–103

    Article  CAS  Google Scholar 

  24. Martinez AW, Phillips ST, Wiley BJ, Gupta M, Whitesides GM (2008) FLASH: a rapid method for prototyping paper-based microfluidic devices. Lab Chip 8(12):2146–2150

    Article  CAS  Google Scholar 

  25. Lu Y, Shi W, Jiang L, Qin J, Lin B (2009) Rapid prototyping of paper-based microfluidics with wax for low-cost portable bioassay. Electrophoresis 30(9):1497–1500

    Article  CAS  Google Scholar 

  26. Lu Y, Shi W, Qin J, Lin B (2009) Low cost portable detection of gold nanoparticle-labeled microfluidic immunoassay with camera cell phone. Electrophoresis 30(4):579–582

    Article  CAS  Google Scholar 

  27. Zhu H, Mavandadi S, Coskun AF, Yaglidere O, Ozcan A (2011) Optofluidic fluorescent imaging cytometry on a cell phone. Anal Chem 83(17):6641–6647

    Article  CAS  Google Scholar 

  28. Chen H, Jin J, Wang Y (1997) Flow injection on-line coprecipitation-preconcentration system using copper (II) diethyldithiocarbamate as carrier for flame atomic absorption spectrometric determination of cadmium lead and nickel in environmental samples. Anal Chim Acta 353(2):181–188

    Article  CAS  Google Scholar 

  29. Godycki LE, Rundle RE (1953) The structure of nickel dimethylglyoxime. Acta Crystallogr 6(6):487–495

    Article  CAS  Google Scholar 

  30. Chung-Gin H, Chao-Sheng H, Ji-hong J (1980) Spectrophotometric determination of micro amounts of cadmium in waste water with cadion and triton X-100. Talanta 27(8):676–678

    Article  CAS  Google Scholar 

  31. Eckert JM, Judd RJ, Lay PA, Symons AD (1991) Response of chromium (V) to the diphenylcarbazide spectrophotometric method for the determination of chromium (VI). Anal Chim Acta 255(1):31–33

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 41006071) and Scientific Research Project of Liaoning Education Department (No. L2013478 and L2013479).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yun-hua Wang or Guo-xia Zheng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1.42 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Li, Yj., Wei, Jf. et al. Paper-based three-dimensional microfluidic device for monitoring of heavy metals with a camera cell phone. Anal Bioanal Chem 406, 2799–2807 (2014). https://doi.org/10.1007/s00216-014-7715-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-7715-x

Keywords

Navigation