Skip to main content

Advertisement

Log in

A fast and biocompatible living virus labeling method based on sialic acid-phenylboronic acid recognition system

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The sialic acid (SA)-phenylboronic acid (PBA) recognition system is of particular interest in the bioconjugation field, because it is simple, fast, efficient, and biocompatible. In this paper, we report a novel method for reversibly labeling living virus with quantum dots (QDs) by taking advantage of this SA-PBA recognition system. The QDs were initially modified with PBA (QDs-PBA) to target them to the surface of vesicular stomatitis virus (VSV), which has abundant with SA on its envelope. The QDs-PBA was of good monodispersity and strong fluorescence, and could be conjugated with VSV by simply incubating with native VSV for 10 min at 37 °C, producing QDs-VSV that was capable of being imaged at the single virion level. The labeling efficiency attained 83 ± 4.3 % (mean ± SD); meanwhile, the activity and recognition ability of the labeled virus were minimally affected. This method was simple, rapid, and reversible. This work promotes the virus labeling development to a new step. That is, native viruses can be reversibly labeled without any modification.

Initially, the 3-amino-phenylboronic acid (APBA) reacted with QDs-COOH to prepare the PBA capped QDs (QDs-PBA). Then, the vesicular stomatitis virus (VSV), on which the surface of the envelope is abundant with sialic acid (SA), could be labeled efficiently and specifically with QDs-PBA in one step based on sialic acid-phenylboronic acid recognition system. The labeling efficiency attained to (83 ± 4.3 %) (mean ± SD). The labeled VSA (QDs-VSV) was still infectious and capable of being imaged at the single virion level

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Seisenberger G, Ried MU, Endress T, Buning H, Hallek M, Brauchle C (2001) Science 294:1929–1932

    Article  CAS  Google Scholar 

  2. Ward BM, Moss B (2001) J Virol 75:4802–4813

    Article  CAS  Google Scholar 

  3. You JO, Liu YS, Liu YC, Joo KI, Peng CA (2006) Int J Nanomedicine 1:59–64

    Article  CAS  Google Scholar 

  4. Joo KI, Fang Y, Liu Y, Xiao L, Gu Z, Tai A, Lee CL, Tang Y, Wang P (2011) ACS Nano 5:3523–3535

    Article  CAS  Google Scholar 

  5. Joo KI, Lei Y, Lee CL, Lo J, Xie J, Hamm-Alvarez SF, Wang P (2008) ACS Nano 2:1553–1562

    Article  CAS  Google Scholar 

  6. Huang LL, Zhou P, Wang HZ, Zhang R, Hao J, Xie HY, He ZK (2012) Chem Commun 48:2424–2426

    Article  CAS  Google Scholar 

  7. Hao J, Huang LL, Zhang R, Wang HZ, Xie HY (2012) Anal Chem 84:8364–8370

    Article  CAS  Google Scholar 

  8. Liu SL, Zhang ZL, Tian ZQ, Zhao H, Liu HB, Sun EZ, Xiao GF, Zhang WP, Wang HZ, Pang DW (2012) ACS Nano 6:141–150

    Article  CAS  Google Scholar 

  9. Liu HB, Liu Y, Liu SL, Pang DW, Xiao GF (2011) J Virol 85:6252–6262

    Article  CAS  Google Scholar 

  10. Huang BH, Lin Y, Zhang ZL, Zhuan FF, Liu AA, Xie M, Tian ZQ, Zhang ZF, Wang HZ, Pang DW (2012) ACS Chem Biol 7:683–688

    Article  CAS  Google Scholar 

  11. Huang LL, Lu GH, Hao J, Wang HZ, Yin DL, Xie HY (2013) Anal Chem 85:5263–5270

    Article  CAS  Google Scholar 

  12. Otsuka H, Uchimura E, Koshino H, Okano T, Kataoka K (2003) J Am Chem Soc 125:3493–3502

    Article  CAS  Google Scholar 

  13. Kim H, Kang YJ, Kang S, Kim KT (2012) J Am Chem Soc 134:4030–4033

    Article  CAS  Google Scholar 

  14. Ellis GA, Palte MJ, Raines RT (2012) J Am Chem Soc 134:3631–3634

    Article  CAS  Google Scholar 

  15. Li Y, Xiao W, Xiao K, Berti L, Luo J, Tseng HP, Fung G, Lam KS (2012) Angew Chem Int Ed 51:2864–2869

    Article  CAS  Google Scholar 

  16. Lv CC, Li H, Wang H, Liu Z (2013) Anal Chem 85:2361–2369

    Article  Google Scholar 

  17. Karnati VV, Gao X, Gao S, Yang W, Ni W, Sankar S, Wang B (2002) Bioorg Med Chem Lett 12:3373–3377

    Article  CAS  Google Scholar 

  18. Fang H, Kaur G, Wang B (2004) J Fluoresc 14:481–489

    Article  CAS  Google Scholar 

  19. Cambre JN, Sumerlin BS (2011) Polymer 52:4631–4643

    Article  CAS  Google Scholar 

  20. Matsumoto A, Sato N, Kataoka K, Miyahara Y. (2009) J Am Chem Soc 131: 12022–12023

    Google Scholar 

  21. Matsumoto A, Cabral H, Sato N, Kataoka K, Miyahara Y (2010) Angew Chem Int Ed 49:5494–5497

    Article  CAS  Google Scholar 

  22. Liu A, Peng S, Soo JC, Kuang M, Chen P, Duan HW (2011) Anal Chem 83:1124–1130

    Article  CAS  Google Scholar 

  23. Han E, Ding L, Ju HX (2011) Anal Chem 83:7006–7012

    Article  CAS  Google Scholar 

  24. Etchison JR, Holland JJ (1974) Proc Natl Acad Sci U S A 71:4011–4014

    Article  CAS  Google Scholar 

  25. Cureton DK, Massol RH, Whelan SPJ, Kirchhausen T (2010) PLoS Pathog 6:e1001127

    Article  Google Scholar 

  26. Kuralay F, Sattayasamitsathit S, Gao W, Uygun A, Katzenberg A, Wang J (2012) J Am Chem Soc 134:15217–15220

    Article  CAS  Google Scholar 

  27. Polsky R, Harper JC, Wheeler DR, Arango DC, Brozik SM (2008) Angew Chem Int Ed 120:2671–2674

    Article  Google Scholar 

  28. Khanal M, Vausselin T, Barras A, Bande O, Turcheniuk K, Benazza M, Zaitsev V, Teodorescu CM, Boukherroub R, Siriwardena A, Dubuisson J, Szunerits S (2013) ACS Appl Mater Interfaces 5:12488–12498

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (973 Program, no. 2011CB933600), the National Natural Science Foundation of China (No. 201372028) and the 863 program (SS2013AA031904).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Yan Xie.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 692 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, LL., Jin, YJ., Zhao, D. et al. A fast and biocompatible living virus labeling method based on sialic acid-phenylboronic acid recognition system. Anal Bioanal Chem 406, 2687–2693 (2014). https://doi.org/10.1007/s00216-014-7651-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-7651-9

Keywords

Navigation