Skip to main content
Log in

Simulation of oxidative stress of guanosine and 8-oxo-7,8-dihydroguanosine by electrochemically assisted injection–capillary electrophoresis–mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Oxidative stress plays a crucial role in DNA and RNA damage within biological cells. As a consequence, mutations of DNA can occur, leading to disorders like cancer and neurodegenerative and cardiovascular diseases. The oxidative attack of guanosine and 8-oxo-7,8-dihydroguanosine is simulated by electrochemistry coupled to capillary electrophoresis–mass spectrometry. The electrochemical conversion of the compound of interest is implemented in the injection protocol termed electrochemically assisted injection (EAI). In this way, oxidation products of guanosine can be generated electrochemically, separated by capillary electrophoresis, and detected by electrospray ionization time-of-flight mass spectrometry (EAI–CE–MS). A fully automated laboratory-made EAI cell with an integrated buffer reservoir and a compartment holding screen-printed electrodes is used for the injection. In this study, parameters like pH of the sample solution and the redox potential applied during the injection were investigated in terms of corresponding formation of well-known markers of DNA damage. The important product species, 8-oxo-7,8-dihydroguanosine, was investigated in a separate study to distinguish between primary and secondary oxidation products. A comparison of product species formed under alkaline, neutral, and acidic conditions is presented. To compare real biological systems with an analytical approach for simulation of oxidative stress, it is desirable to have a well-defined control over the redox potential and to use solutions, which are close to physiological conditions. In contrast to typical HPLC–MS protocols, the hyphenation of EAI, CE, and MS enables the generation and separation of species involved without the use of organic solvents. Thus, information of the electrochemical behavior of the nucleoside guanosine as well as the primary oxidation product 8-oxo-7,8-dihydroguanosine can be characterized under conditions close to the physiological situation. In addition, the migration behavior found in CE separations of product species can be used to identify compounds if several possible species have the same mass-to-charge values determined by MS detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1

Similar content being viewed by others

Abbreviations

5-OH-8-oxo-Gs:

5-Hydroxy-8-oxo-7,8-dihydroguanosine

8-Oxo-Gs:

8-Oxo-7,8-dihydroguanosine

BDD:

Boron-doped diamond

Caf:

Caffeine

CE:

Capillary electrophoresis

dGh:

Dehydroguanidinohydantoin

dGMP:

2′-Deoxyguanosine-5′-monophosphate

EAI:

Electrochemically assisted injection

EC–MS:

Electrochemistry–mass spectrometry

EC–μLC–MS:

Electrochemistry–μ-liquid chromatography–mass spectrometry

EOF:

Electroosmotic flow

ESI-Tof-MS:

Electrospray ionization time-of-flight mass spectrometry

Gh:

Guanidinohydantoin

Gs:

Guanosine

Ip:

Diiminopyrimidinone

Iz:

Imidazolone

LC–MS:

Liquid chromatography–mass spectrometry

MS:

Mass spectrometry

NH4OAc:

Ammonium acetate

Ox:

Oxadiazine

Q-Tof-MS:

Quadrupole time-of-flight mass spectrometry

ROS:

Reactive oxygen species

Sp:

Spiroiminodihydantoin

SPCE:

Screen-printed carbon electrode

t m :

Migration time

References

  1. Burrows CJ, Muller JG (1998) Chem Rev 98:1109. doi:10.1021/cr960421s

    Article  CAS  Google Scholar 

  2. Wang D, Kreutzer DA, Essigmann JM (1998) Mutat Res 400:99. doi:10.1016/S0027-5107(98)00066-9

    Article  CAS  Google Scholar 

  3. Kamiya H (2003) Nucleic Acids Res 31:517. doi:10.1093/nar/gkg137

    Article  CAS  Google Scholar 

  4. Broedbaek K, Weimann A, Stovgaard ES, Poulsen HE (2011) Free Radic Biol Med 51:1473. doi:10.1016/j.freeradbiomed.2011.07.007

    Article  CAS  Google Scholar 

  5. Dryhurst G, Elving PJ (1969) Talanta 16:855. doi:10.1016/0039-9140(69)80126-8

    Article  CAS  Google Scholar 

  6. Oliveira-Brett AM, Matysik F-M (1997) Bioelectrochem Bioener 42:111. doi:10.1016/S0302-4598(96)05123-9

    Article  CAS  Google Scholar 

  7. Baumann A, Lohmann W, Jahn S, Karst U (2010) Electroanalysis 3:286. doi:10.1002/elan.200900358

    Article  Google Scholar 

  8. Boussicault F, Robert M (2008) Chem Rev 108:10.1021/cr0680787

    Article  Google Scholar 

  9. Mautjana NA, Looi DW, Eyler JR, Brajter-Toth A (2009) Electrochim Acta 55:52. doi:10.1016/j.electacta.2009.07.083

    Article  CAS  Google Scholar 

  10. Keniry MA (2001) Biopolymers 56:123. doi:10.1002/1097-0282(2000/2001)56:3<123::AID-BIP10010>3.0.CO;2–3

    Article  CAS  Google Scholar 

  11. Pitterl F, Chervet J-P, Oberacher H (2010) Anal Bioanal Chem 397:1203. doi:10.1007/s00216-010-3674-z

    Article  CAS  Google Scholar 

  12. Erb R, Plattner S, Pitterl F, Brouwer H-J, Oberacher H (2012) Electrophoresis 33:614. doi:10.1002/elps.201100406

    Article  CAS  Google Scholar 

  13. Matysik F-M (2003) Electrochem Commun 5:1021. doi:10.1016/j.elecom.2003.10.001

    Article  CAS  Google Scholar 

  14. Scholz R, Matysik F-M (2011) Analyst 136:1562. doi:10.1039/C0AN00794C

    Article  CAS  Google Scholar 

  15. Lopes FS, Antunes O, Gutz IGR (2010) Electrochem Commun 12:1387. doi:10.1016/j.elecom.2010.07.027

    Article  CAS  Google Scholar 

  16. Santos MSF, Lopes FS, Vidal DTR, do Lago CL, Gutz IGR (2012) Anal Chem 84:7599. doi:10.1021/ac30193121

    Article  CAS  Google Scholar 

  17. Palatzky P, Matysik F-M (2012) Electrophoresis 33:2689. doi:10.1002/elps.201200088

    Article  CAS  Google Scholar 

  18. Palatzky P, Zöpfl A, Hirsch T, Matysik F-M (2013) Electroanalysis 25:117. doi:10.1002/elan.201200393

    Article  CAS  Google Scholar 

  19. Markus TZ, Daube SS, Naaman R, Fleming AM, Muller JG, Burrows CJ (2009) J Am Chem Soc 131:89. doi:10.1021/ja804177j

    Article  CAS  Google Scholar 

  20. Steenken S, Jovanovic SV (1997) J Am Chem Soc 119:617. doi:10.1021/ja962255b

    Article  CAS  Google Scholar 

  21. Pratviel G, Meunier B (2006) Chem Eur J 12:6018. doi:10.1002/chem.200600539

    Article  CAS  Google Scholar 

  22. Goyal RN, Sondhi SM, Latoti AM (2005) New J Chem 29:587. doi:10.1039/b415452p

    Article  CAS  Google Scholar 

  23. McCallum JEB, Kuniyoshi CY, Foote CS (2004) J Am Chem Soc 126:16777. doi:10.1021/ja030678p

    Article  CAS  Google Scholar 

  24. Verdolino V, Cammi R, Munk BH, Schlegel HB (2008) J Phys Chem B 112:16860. doi:10.1021/jp8068877

    Article  CAS  Google Scholar 

  25. Fleming AM, Muller JG, Dlouhy AC, Burrows CJ (2012) J Am Chem Soc 134:15091. doi:10.1021/ja306077b

    Article  CAS  Google Scholar 

  26. Ye Y, Muller JG, Luo W, Mayne CL, Shallop AJ, Jones RA, Burrows CJ (2003) J Am Chem Soc 125:13926. doi:10.1021/ja0378660

    Article  CAS  Google Scholar 

  27. Niles JC, Wishnok JS, Tannenbaum SR (2006) Nitric Oxide 14:109. doi:10.1016/j.niox.2005.11.001

    Article  CAS  Google Scholar 

  28. Sheu C, Kang P, Khan S, Foote CS (2002) J Am Chem Soc 124:3905. doi:10.1021/ja011696e

    Article  CAS  Google Scholar 

  29. Kang P, Foote CS (2002) J Am Chem Soc 124:4865. doi:10.1021/ja012038x

    Article  CAS  Google Scholar 

  30. Volk KJ, Lee MS, Yost RA, Brajter-Toth A (1988) Anal Chem 60:720. doi:10.1021/ac00158a025

    Article  CAS  Google Scholar 

  31. Volk KJ, Yost RA, Brajter-Toth A (1992) Anal Chem 64:21A. doi:10.1021/ac00025a721

    CAS  Google Scholar 

  32. Müller H, Carell T (2007) Eur J Org Chem 2007:1438. doi:10.1002/ejoc.200600982

    Article  Google Scholar 

  33. Murakami H, Esaka Y, Nakayama T, Uno B (2011) Chem Lett 40:268. doi:10.1246/cl.2011.268

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Research Executive Agency (REA) of the European Union under grant agreement number PITN-GA-2010-264772 (ITN CHEBANA). We thank J. Kiermaier for the measurements concerning high-resolution mass spectrometry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank-Michael Matysik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scholz, R., Palatzky, P. & Matysik, FM. Simulation of oxidative stress of guanosine and 8-oxo-7,8-dihydroguanosine by electrochemically assisted injection–capillary electrophoresis–mass spectrometry. Anal Bioanal Chem 406, 687–694 (2014). https://doi.org/10.1007/s00216-013-7500-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-7500-2

Keywords

Navigation