Skip to main content

Advertisement

Log in

A qualitative/quantitative approach for the detection of 37 tryptamine-derived designer drugs, 5 β-carbolines, ibogaine, and yohimbine in human urine and plasma using standard urine screening and multi-analyte approaches

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The first synthetic tryptamines have entered the designer drug market in the late 1990s and were distributed as psychedelic recreational drugs. In the meantime, several analogs have been brought onto the market indicating a growing interest in this drug class. So far, only scarce analytical data were available on the detectability of tryptamines in human biosamples. Therefore, the aim of the presented study was the development and full validation of a method for their detection in human urine and plasma and their quantification in human plasma. The liquid chromatography-linear ion trap mass spectrometry method presented covered 37 tryptamines as well as five β-carbolines, ibogaine, and yohimbine. Compounds were analyzed after protein precipitation of urine or fast liquid–liquid extraction of plasma using an LXQ linear ion trap coupled to an Accela ultra ultra high-performance liquid chromatography system. Data mining was performed via information-dependent acquisition or targeted product ion scan mode with positive electrospray ionization. The assay was selective for all tested substances with limits of detection in urine between 10 and 100 ng/mL and in plasma between 1 and 100 ng/mL. A validated quantification in plasma according to international recommendation could be demonstrated for 33 out of 44 analytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. European Commission (2005) Official J EU:L 127:

  2. United Nations Office on Drugs and Crime (UNODC) (2013) The challenge of new psychoactive substances. Global SMART Programme. http://www.unodc.org/documents/scientific/NPS_2013_SMART.pdf, pp. 1–122

  3. Ott J (1996) Pharmacotheon: entheogenic drugs, their plant sources and history. Natural Products, Kennewick

    Google Scholar 

  4. Ott J (2001) Shamanic snuffs or entheogenic errhines. Entheobotanica, Solothurn

    Google Scholar 

  5. Szara S (1970) DMT (N, N-Dimethyltryptamine) and homologues: clinical and pharmacological considerations. In: Efron DH (ed) Psychotomimetic drugs. Raven, New York, pp 275–298

    Google Scholar 

  6. Shulgin A, Shulgin A (1997) Tihkal, the continuation. Transform Press, Berkeley

    Google Scholar 

  7. Shulgin AT (2003) Basic pharmacology and effects. In: Laing RR (ed) Hallucinogens. A forensic drug handbook. Elsevier Science, London, pp 67–137

    Google Scholar 

  8. Nichols DE (2004) Pharmacol Ther 101:131–181

    Article  CAS  Google Scholar 

  9. Ray TS (2010) PLoS One 5:e9019

    Article  Google Scholar 

  10. Shulgin AT, Carter MF (1980) Commun Psychopharmacol 4:363–369

    CAS  Google Scholar 

  11. Meatherall R, Sharma P (2003) J Anal Toxicol 27:313–317

    Article  CAS  Google Scholar 

  12. Vorce SP, Sklerov JH (2004) J Anal Toxicol 28:407–410

    Article  CAS  Google Scholar 

  13. Wilson JM, McGeorge F, Smolinske S, Meatherall R (2005) Forensic Sci Int 148:31–36

    Article  CAS  Google Scholar 

  14. Tanaka E, Kamata T, Katagi M, Tsuchihashi H, Honda K (2006) Forensic Sci Int 163:152–154

    Article  CAS  Google Scholar 

  15. Smolinske SC, Rastogi R, Schenkel S (2005) J Med Toxicol 1:22–25

    Article  Google Scholar 

  16. Shulgin A (2013) www erowid org http://www.erowid.org/chemicals/5meo_dalt/5meo_dalt_info1.shtml

  17. Arunotayanun W, Dalley JW, Huang XP, Setola V, Treble R, Iversen L, Roth BL, Gibbons S (2013) Bioorg Med Chem Lett 23:3411–3415

    Article  CAS  Google Scholar 

  18. Corkery JM, Durkin E, Elliott S, Schifano F, Ghodse AH (2012) Prog Neuropsychopharmacol Biol Psychiatry 39:259–262

    Article  CAS  Google Scholar 

  19. Martins CPB, Freeman S, Alder JF, Passie T, Brandt SD (2010) Trends Anal Chem 29:285–296

    Article  CAS  Google Scholar 

  20. Brandt SD, Martins CPB (2010) Trends Anal Chem 29:858–869

    Article  CAS  Google Scholar 

  21. Gaujac A, Navickiene S, Collins MI, Brandt SD, de Andrade JB (2012) Drug Test Anal 4:636–648

    Article  CAS  Google Scholar 

  22. Barker SA, McIlhenny EH, Strassman R (2012) Drug Test Anal 4:617–635

    Article  CAS  Google Scholar 

  23. McKenna DJ, Towers GH, Abbott F (1984) J Ethnopharmacol 10:195–223

    Article  CAS  Google Scholar 

  24. McIlhenny EH, Riba J, Barbanoj MJ, Strassman R, Barker SA (2011) Biomed Chromatogr 25:970–984

    Article  CAS  Google Scholar 

  25. Riba J, Valle M, Urbano G, Yritia M, Morte A, Barbanoj MJ (2003) J Pharmacol Exp Ther 306:73–83

    Article  CAS  Google Scholar 

  26. Riba J, McIlhenny EH, Valle M, Bouso JC, Barker SA (2012) Drug Test Anal 4:610–616

    Article  CAS  Google Scholar 

  27. Callaway JC, Raymon LP, Hearn WL, McKenna DJ, Grob CS, Brito GS, Mash DC (1996) J Anal Toxicol 20:492–497

    Article  CAS  Google Scholar 

  28. Hasler F, Bourquin D, Brenneisen R, Bar T, Vollenweider FX (1997) Pharm Acta Helv 72:175–184

    Article  CAS  Google Scholar 

  29. Wohlfarth A, Weinmann W, Dresen S (2010) Anal Bioanal Chem 396:2403–2414

    Article  CAS  Google Scholar 

  30. Wohlfarth A, Weinmann W (2010) Bioanalysis 2:965–979

    Article  CAS  Google Scholar 

  31. Jin MJ, Jin C, Kim JY, In MK, Kwon OS, Yoo HH (2011) J Forensic Sci 56:1044–1048

    Article  CAS  Google Scholar 

  32. Katagi M, Kamata T, Zaitsu K, Shima N, Kamata H, Nakanishi K, Nishioka H, Miki A, Tsuchihashi H (2010) Ther Drug Monit 32:328–331

    Article  CAS  Google Scholar 

  33. Brandt SD, Tirunarayanapuram SS, Freeman S, Dempster N, Barker SA, Daley PF, Cozzi NV, Martins CPB (2008) J Label Compd Radiopharm 51:423–429

    Article  CAS  Google Scholar 

  34. Brandt SD, Freeman S, Fleet IA, McGagh P, Alder JF (2005) Analyst 130:330–344

    Article  CAS  Google Scholar 

  35. Brandt SD, Tearavarich R, Dempster N, Cozzi NV, Daley PF (2012) Drug Test Anal 4:24–32

    Article  CAS  Google Scholar 

  36. Tearavarich R, Hahnvajanawong V, Dempster N, Daley PF, Cozzi NV, Brandt SD (2011) Drug Test Anal 3:597–608

    Article  CAS  Google Scholar 

  37. Wissenbach DK, Meyer MR, Remane D, Weber AA, Maurer HH (2011) Anal Bioanal Chem 400:79–88

    Article  CAS  Google Scholar 

  38. Remane D, Meyer MR, Peters FT, Wissenbach DK, Maurer HH (2010) Anal Bioanal Chem 397:2303–2314

    Article  CAS  Google Scholar 

  39. Wissenbach DK, Meyer MR, Remane D, Philipp AA, Weber AA, Maurer HH (2011) Anal Bioanal Chem 400:3481–3489

    Article  CAS  Google Scholar 

  40. Maurer HH, Wissenbach DK, Weber AA (2013) Maurer/Wissenbach/Weber MWW LC-MSn library of drugs, poisons, and their metabolites. Wiley-VCH, Weinheim

    Google Scholar 

  41. European Medicines Agency (2009) Guidelines for the validation of analytical methods used in residue depletion studies. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2010/01/WC500040499.pdf, pp. 1–19

  42. European Commission (2012) Method validation and quality control procedures for pesticide residues analysis in food and feed. Guidance documents. http://ec.europa.eu/food/plant/protection/resources/qualcontrol_en.pdf, pp. 1–40

  43. European Communities (2002) Off J Eur Commun 221:8–32

    Google Scholar 

  44. Peters FT, Paul LD, Musshoff F, Aebi B, Auwaerter V, Kraemer T, Skopp G (2009) Toxichem Krimtech 76:185–208 (http://www.gtfch.org/cms/images/stories/media/tk/tk76_3/richtlinieanhangb2009-06-01.pdf)

    Google Scholar 

  45. Wille SM, Peters FT, Di-Fazio V, Samyn N (2011) Accred Qual Assur 16:279–292

    Article  Google Scholar 

  46. Scientific Working Group for Forensic Toxicology S (2013) Standard practices for method validation in forensic toxicology. http://www.swgtox.org/documents/Validation3.pdf, pp. 1–52

  47. United Nations Office on Drugs and Crime (UNODC) (2009) Guidance for the validation of analytical methodology and calibration of equipment used for testing of illicit drugs in seized materials and biological specimens. http://www.unodc.org/unodc/en/scientists/guidance-for-the-validation-of-analytical-methodology.html, pp. 1–76

  48. Matuszewski BK, Constanzer ML, Chavez-Eng CM (2003) Anal Chem 75:3019–3030

    Article  CAS  Google Scholar 

  49. Shah VP, Midha KK, Findlay JW, Hill HM, Hulse JD, McGilveray IJ, McKay G, Miller KJ, Patnaik RN, Powell ML, Tonelli A, Viswanathan CT, Yacobi A (2000) Pharm Res 17:1551–1557

    Article  CAS  Google Scholar 

  50. Peters FT, Hartung M, Herbold M, Schmitt G, Daldrup T, Musshoff F (2004) Toxichem Krimtech 71:146–154 (http://www.gtfch.org/cms/images/stories/media/tk/tk71_3/Peters1.pdf)

    Google Scholar 

  51. Peters FT, Paul LD, Musshoff F, Aebi B, Auwaerter V, Kraemer T, Skopp G (2009) Toxichem Krimtech 76:185–208 (https://www.gtfch.org/cms/files/GTFCh_Richtlinie_Anhang%20B_Validierung_Version%201.pdf)

    Google Scholar 

  52. Viswanathan CT, Bansal S, Booth B, DeStefano AJ, Rose MJ, Sailstad J, Shah VP, Skelly JP, Swann PG, Weiner R (2007) Pharm Res 24:1962–1973

    Article  CAS  Google Scholar 

  53. Remane D, Meyer MR, Wissenbach DK, Maurer HH (2010) Rapid Commun Mass Spectrom 24:3103–3108

    Article  CAS  Google Scholar 

  54. European Medicines Agency (2011) Guideline on bioanalytical method validation. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2011/08/WC500109686.pdf,

Download references

Acknowledgments

The authors like to thank Gabriele Ulrich, Carsten Schröder, and Armin A. Weber for their support as well as Carina Wink and Golo M. Meyer for their help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus R. Meyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyer, M.R., Caspar, A., Brandt, S.D. et al. A qualitative/quantitative approach for the detection of 37 tryptamine-derived designer drugs, 5 β-carbolines, ibogaine, and yohimbine in human urine and plasma using standard urine screening and multi-analyte approaches. Anal Bioanal Chem 406, 225–237 (2014). https://doi.org/10.1007/s00216-013-7425-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-7425-9

Keywords

Navigation