Skip to main content
Log in

Characterization of hyperbranched glycopolymers produced in vitro using enzymes

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Asymmetrical flow field flow fractionation (AF4) has proven to be a very powerful and quantitative method for the determination of the macromolecular structure of high molar mass branched biopolymers, when coupled with multi-angle laser light scattering (MALLS). This work describes a detailed investigation of the macromolecular structure of native glycogens and hyperbranched α-glucans (HBPs), with average molar mass ranging from 2 × 106 to 4.3 × 107 g mol−1, which are not well fractionated by means of classical size-exclusion chromatography. HBPs were enzymatically produced from sucrose by the tandem action of an amylosucrase and a branching enzyme mimicking in vitro the elongation and branching steps involved in glycogen biosynthesis. Size and molar mass distributions were studied by AF4, coupled with online quasi-elastic light scattering (QELS) and transmission electron microscopy. AF4-MALLS-QELS has shown a remarkable agreement between hydrodynamic radii obtained by online QELS and by AF4 theory in normal mode with constant cross flow. Molar mass, size, and dispersity were shown to significantly increase with initial sucrose concentration, and to decrease when the branching enzyme activity increases. Several populations with different size range were observed: the amount of small size molecules decreasing with increasing sucrose concentration. The spherical and dense global conformation thus highlighted was partly similar to native glycogens. A more detailed study of HBPs synthesized from low and high initial sucrose concentrations was performed using complementary enzymatic hydrolysis of external chains and chromatography. It emphasized a more homogeneous branching pattern than native glycogens with a denser core and shorter external chains.

Characterization of hyperbranched glycopolymers. TEM Transmission electron microscopy. AF4-MALLS-QELS Asymmetrical flow field flow fractionation coupled with multi-angle laser-light scattering and quasi-elastic light scattering

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Buleon A, Colonna P, Planchot V, Ball S (1998) Int J Biol Macromol 23:85–112

    Article  CAS  Google Scholar 

  2. Ball SG, Morell MK (2003) Annu Rev Plant Biol 54:207–233

    Article  CAS  Google Scholar 

  3. Shearer J, Graham TE (2002) Can J Appl Physiol 27:179–203

    Article  CAS  Google Scholar 

  4. Manners DJ (1991) Carbohydr Polym 16:37–82

    Article  CAS  Google Scholar 

  5. Lin Q, Huang B, Zhang M, Zhang X, Rivenbark J, Lappe RL, James MG, Myers AM, Hennen-Bierwagen TA (2012) Plant Physiol 158:679–692

    Article  CAS  Google Scholar 

  6. James MG, Denyer K, Myers AM (2003) Curr Opin Plant Biol 6:215–222

    Article  CAS  Google Scholar 

  7. Kotting O, Kossmann J, Zeeman SC, Lloyd JR (2010) Curr Opin Plant Biol 13:321–329

    Article  Google Scholar 

  8. Grimaud F, Lancelon-Pin C, Rolland-Sabate A, Roussel X, Laguerre S, Vikso-Nielsen A, Putaux J-L, Guilois S, Buleon A, D’Hulst C, Potocki-Veronese G (2013) Biomacromolecules 14:438–447

    Article  CAS  Google Scholar 

  9. Roussel X, Lancelon-Pin C, Vikso-Nielsen A, Rolland-Sabate A, Grimaud F, Potocki-Veronese G, Buleon A, Putaux JL, D’Hulst C (2013) BBA General Subjects 1830:2167–2177

    Article  CAS  Google Scholar 

  10. Ciric J, Loos K (2013) Carbohydr Polym 93(1):31–37

    Article  CAS  Google Scholar 

  11. Burchard W (1999) Adv Polymer Sci 143:113–194

    Article  CAS  Google Scholar 

  12. Rolland-Sabate A, Guilois S, Jaillais B, Colonna P (2011) Anal Bioanal Chem 399:1493–1505

    Article  CAS  Google Scholar 

  13. Striegel AM (2005) Anal Chem 77:104A–113A

    Article  CAS  Google Scholar 

  14. Morris GA, Ang S, Hill SE, Lewis S, Schafer B, Nobbmann U, Harding SE (2008) Carbohydr Polym 71:101–108

    Article  CAS  Google Scholar 

  15. Rolland-Sabate A, Mendez-Montealvo MG, Colonna P, Planchot V (2008) Biomacromolecules 9:1719–1730

    Article  CAS  Google Scholar 

  16. Cave RA, Seabrook SA, Gidley MJ, Gilbert RG (2009) Biomacromolecules 10:2245–2253

    Article  CAS  Google Scholar 

  17. Vilaplana F, Gilbert RG (2010) J Sep Sci 33:3537–3554

    Article  CAS  Google Scholar 

  18. Martin M (1998) Adv Chromatogr 39:1–38

    CAS  Google Scholar 

  19. Rolland-Sabate A, Colonna P, Mendez-Montealvo MG, Planchot V (2007) Biomacromolecules 8:2520–2532

    Article  CAS  Google Scholar 

  20. Wittgren B, Wahlund KG (1997) J Chromatogr A 791:135–149

    Article  CAS  Google Scholar 

  21. Gaborieau M, Gilbert RG, Gray-Weale A, Hernandez JM, Castignolles P (2007) Macromol Theory Simul 16:13–28

    Article  CAS  Google Scholar 

  22. Gidley MJ, Hanashiro I, Hani NM, Hill SE, Huber A, Jane J-L, Liu Q, Morris GA, Rolland-Sabate A, Striegel AM, Gilbert RG (2010) Carbohydr Polym 79:255–261

    Article  CAS  Google Scholar 

  23. Wittgren B, Wahlund KG, Derand H, Wesslen B (1996) Macromolecules 29:268–276

    Article  CAS  Google Scholar 

  24. Wahlund KG (2013) J Chromatogr A 1287:97–112

    Article  CAS  Google Scholar 

  25. Hakansson A, Magnusson E, Bergenstahl B, Nilsson L (2012) J Chromatogr A 1253:120–126

    Article  CAS  Google Scholar 

  26. Magnusson E, Hakansson A, Janiak J, Bergenstahl B, Nilsson L (2012) J Chromatogr A 1253:127–133

    Article  CAS  Google Scholar 

  27. Rolland-Sabate A, Colonna P, Potocki-Veronese G, Monsan P, Planchot V (2004) J Cereal Sci 40:17–30

    Article  CAS  Google Scholar 

  28. Koch K, Andersson R, Aman P (1998) J Chromatogr A 800:199–206

    Article  CAS  Google Scholar 

  29. Montesanti N, Veronese G, Buleon A, Escalier P-C, Kitamura S, Putaux J-L (2010) Biomacromolecules 11:3049–3058

    Article  CAS  Google Scholar 

  30. Ciric J, Oostland J, de Vries JW, Woortman AJJ, Loos K (2012) Anal Chem 84:10463–10470

    Article  CAS  Google Scholar 

  31. Burchard W (1983) Adv Polym Sci 48:1–124

    Article  CAS  Google Scholar 

  32. Potocki-Veronese G, Putaux J-L, Dupeyre D, Albenne C, Remaud-Simeon M, Monsan P, Buleon (2005) Biomacromolecules 6:1000–1011

    Article  CAS  Google Scholar 

  33. Calder PC (1991) Int J Biochem 23:1335–1352

    Article  CAS  Google Scholar 

  34. Yun SH, Matheson NK (1993) Carbohydr Res 243:307–321

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Agence Nationale de la Recherche for financial support (grant number ANR-09-CP2D-07-01), as well as Marion De Carvahlo, Bruno Pontoire and Nelly Monties for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnès Rolland-Sabaté.

Additional information

Published in the topical collection Field-Flow Fractionation with guest editors S. Kim R. Williams and Karin D. Caldwell.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1255 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rolland-Sabaté, A., Guilois, S., Grimaud, F. et al. Characterization of hyperbranched glycopolymers produced in vitro using enzymes. Anal Bioanal Chem 406, 1607–1618 (2014). https://doi.org/10.1007/s00216-013-7403-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-7403-2

Keywords

Navigation