Skip to main content
Log in

HRMAS NMR spectroscopy combined with chemometrics as an alternative analytical tool to control cigarette authenticity

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this paper, we present for the first time the use of high-resolution magic angle spinning nuclear magnetic resonance (HRMAS NMR) spectroscopy combined with chemometrics as an alternative tool for the characterization of tobacco products from different commercial international brands as well as for the identification of counterfeits. Although cigarette filling is a very complex chemical mixture, we were able to discriminate between dark, bright, and additive-free cigarette blends belonging to six different filter-cigarette brands, commercially available, using an approach for which no extraction procedure is required. Second, we focused our study on a specific worldwide-distributed brand for which established counterfeits were available. We discriminated those from their genuine counterparts with 100 % accuracy using unsupervised multivariate statistical analysis. The counterfeits that we analyzed showed a higher amount of nicotine and solanesol and a lower content of sugars, all endogenous tobacco leaf metabolites. This preliminary study demonstrates the great potential of HRMAS NMR spectroscopy to help in controlling cigarette authenticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Collin J, LeGresley E, MacKenzie R, Lawrence S, Lee K (2004) Complicity in contraband: British American Tobacco and cigarette smuggling in Asia. Tob Control 13:104–111

    Article  Google Scholar 

  2. Joossens L, Raw M (2003) Turning off the tap: the real solution to cigarette smuggling. Int J Tuber Lung Dis 7(3):214–222

    CAS  Google Scholar 

  3. Staake T, Thiesse F, Fleish E (2012) Business strategies in the counterfeit market. J Bus Res 65:658–665

    Article  Google Scholar 

  4. Pappas RS, Polzin GM, Watson CH, Ashley DL (2007) Cadmium, lead, and thallium in smoke particulate from counterfeit cigarettes compared to authentic US brands. Food Chem Toxicol 45(2):202–209

    Article  CAS  Google Scholar 

  5. Judd CD, Swami K (2010) ICP-MS determination of lead isotope ratios in legal and counterfeit cigarette tobacco samples. Isot Environ Health Stud 46(4):484–494

    Article  CAS  Google Scholar 

  6. Carmines EL (2002) Evaluation of the potential effects of ingredients added to cigarettes. Part 1: cigarette design, testing approach, and review of results. Food Chem Toxicol 40(1):77–91

    Article  CAS  Google Scholar 

  7. Leffingwell JC (1999) Basic chemical constituents of tobacco leaf and differences among tobacco types. In: Davies DL, Nielsen MT (eds) Tobacco—production, chemistry and technology. Blackwell Science, Oxford, pp 265–284

    Google Scholar 

  8. Coggins CRE, Edmiston JS, Jerome AM, Langston TB, Sena EJ, Smith DC, Oldham MJ (2011) A comprehensive evaluation of the toxicology of cigarette ingredients: essential oils and resins. Inhal Toxicol 23:41–69

    Article  CAS  Google Scholar 

  9. Coggins CRE, Fisher MT, Smith DC, Oldham MJ (2011) A comprehensive evaluation of the toxicology of cigarette ingredients: cocoa-derived ingredients. Inhal Toxicol 23:70–83

    Article  CAS  Google Scholar 

  10. Coggins CRE, Frost-Pineda K, Smith DC, Oldham MJ (2011) A comprehensive evaluation of the toxicology of cigarette ingredients: aromatic and aliphatic alcohol compounds. Inhal Toxicol 23:141–156

    Article  CAS  Google Scholar 

  11. Coggins CRE, Jerome AM, Edmiston JS, Oldham MJ (2011) A comprehensive evaluation of the toxicology of cigarette ingredients: aliphatic carbonyl compounds. Inhal Toxicol 23:102–118

    Article  CAS  Google Scholar 

  12. Coggins CRE, Liu JM, Merski JA, Werley MS, Oldham MJ (2011) A comprehensive evaluation of the toxicology of cigarette ingredients: aliphatic and aromatic carboxylic acids. Inhal Toxicol 23:119–140

    Article  CAS  Google Scholar 

  13. Coggins CRE, Merski JA, Oldham MJ (2011) A comprehensive evaluation of the toxicology of cigarette ingredients: heterocyclic nitrogen compounds. Inhal Toxicol 23:84–89

    Article  CAS  Google Scholar 

  14. Coggins CRE, Sena EJ, Langston TB, Oldham MJ (2011) A comprehensive evaluation of the toxicology of cigarette ingredients: aromatic carbonyl compounds. Inhal Toxicol 23:90–101

    Article  CAS  Google Scholar 

  15. Coggins CRE, Sena EJ, Oldham MJ (2011) A comprehensive evaluation of the toxicology of cigarette ingredients: inorganic compounds. Inhal Toxicol 23:157–171

    Article  CAS  Google Scholar 

  16. Coggins CRE, Wagner KA, Werley MS, Oldham MJ (2011) A comprehensive evaluation of the toxicology of cigarette ingredients: carbohydrates and natural products. Inhal Toxicol 23:13–40

    Article  CAS  Google Scholar 

  17. Dempsey R, Coggins CRE, Roemer E (2011) Toxicological assessment of cigarette ingredients. Regul Toxicol Pharmacol 61(1):119–128

    Article  CAS  Google Scholar 

  18. Carmines EL, Gaworski CL (2005) Toxicological evaluation of glycerin as a cigarette ingredient. Food Chem Toxicol 43(10):1521–1539

    Article  CAS  Google Scholar 

  19. Gaworski CL, Oldham MJ, Coggins CRE (2010) Toxicological considerations on the use of propylene glycol as a humectant in cigarettes. Toxicology 269(1):54–66

    Article  CAS  Google Scholar 

  20. Gaworski CL, Dozier MM, Gerhart JM, Rajendran N, Brennecke LH, Aranyi C, Heck JD (1997) 13-week inhalation toxicity study of menthol cigarette smoke. Food Chem Toxicol 35(7):683–692

    Article  CAS  Google Scholar 

  21. Carmines EL, Lemus R, Gaworski CL (2005) Toxicologic evaluation of licorice extract as a cigarette ingredient. Food Chem Toxicol 43(9):1303–1322

    Article  CAS  Google Scholar 

  22. Clark TJ, Bunch JE (1997) Qualitative and quantitative analysis of flavor additives on tobacco products using SPME-GC mass spectroscopy. J Agric Food Chem 45(3):844–849

    Article  CAS  Google Scholar 

  23. Stavanja MS, Ayres PH, Meckley DR, Bombick ER, Borgerding MF, Morton MJ, Garner CD, Pence DH, Swauger JE (2006) Safety assessment of high fructose corn syrup (HFCS) as an ingredient added to cigarette tobacco. Exp Toxicol Pathol 57(4):267–281

    Article  CAS  Google Scholar 

  24. Barsanti KC, Luo WT, Isabelle LM, Pankow JF, Peyton DH (2007) Tobacco smoke particulate matter chemistry by NMR. Magn Reson Chem 45(2):167–170

    Article  CAS  Google Scholar 

  25. Baker RR, Massey ED, Smith G (2004) An overview of the effects of tobacco ingredients on smoke chemistry and toxicity. Food Chem Toxicol 42:S53–S83

    Article  CAS  Google Scholar 

  26. Adam T, Ferge T, Mitschke S, Streibel T, Baker RR, Zimmermann R (2005) Discrimination of three tobacco types (Burley, Virginia and Oriental) by pyrolysis single-photon ionisation–time-of-flight mass spectrometry and advanced statistical methods. Anal Bioanal Chem 381(2):487–499

    Article  CAS  Google Scholar 

  27. Giokas DL, Thanasoulias NC, Vlessidis AG (2011) Multivariate chemometric discrimination of cigarette tobacco blends based on the UV–vis spectrum of their hydrophilic extracts. J Hazard Mater 185(1):86–92

    Article  CAS  Google Scholar 

  28. Moreira EDT, Pontes MJC, Galvão RKH, Araújo MCU (2009) Near infrared reflectance spectrometry classification of cigarettes using the successive projections algorithm for variable selection. Talanta 79(5):1260–1264

    Article  CAS  Google Scholar 

  29. Tan C, Qin X, Li M (2009) Comparison of chemometric methods for brand classification of cigarettes by near-infrared spectroscopy. Vib Spectrosc 51(2):276–282

    Article  CAS  Google Scholar 

  30. Ma Z, Barich DH, Solum MS, Pugmire RJ (2003) Solid-state 15N NMR studies of tobacco leaves. J Agric Food Chem 52(2):215–221

    Article  Google Scholar 

  31. Wooten JB (1995) C-13 CPMAS NMR of bright and burley tobaccos. J Agric Food Chem 43(11):2858–2868

    Article  CAS  Google Scholar 

  32. Axelson DE, Wooten JB (2007) Magnetic resonance imaging characterization of intact smoked cigarettes. J Anal Appl Pyrol 78(1):214–227

    Article  CAS  Google Scholar 

  33. Axelson DE, Wooten JB (2000) Bulk analysis of tobacco and cigarettes by magnetic resonance imaging. J Agric Food Chem 48(6):2199–2207

    Article  CAS  Google Scholar 

  34. Wooten JB, Kalengamaliro NE, Axelson DE (2009) Characterization of bright tobaccos by multivariate analysis of C-13 CPMAS NMR spectra. Phytochemistry 70(7):940–951

    Article  CAS  Google Scholar 

  35. Luo DH, Hosseini HG, Stewart JR (2004) Application of ANN with extracted parameters from an electronic nose in cigarette brand identification. Sensors Actuators B Chem 99(2–3):253–257

    Article  CAS  Google Scholar 

  36. Binette MJ, Lafontaine P, Vanier M, Ng LK (2009) Characterization of Canadian cigarettes using multi-stable isotope analysis by gas chromatography–isotope ratio mass spectrometry. J Agric Food Chem 57(4):1151–1155

    Article  CAS  Google Scholar 

  37. Donaldson MP, Stephens WE (2010) Environmental pollen trapped by tobacco leaf as indicators of the provenance of counterfeit cigarette products: a preliminary investigation and test of concept. J Forensic Sci 55(3):738–741

    Article  Google Scholar 

  38. Dhalluin C, Boutillon C, Tartar A, Lippens G (1997) Magic angle spinning nuclear magnetic resonance in solid-phase peptide synthesis. JACS 119(43):10494–10500

    Article  CAS  Google Scholar 

  39. Valentini M, Ritota M, Cafiero C, Cozzolino S, Leita L, Sequi P (2011) The HRMAS–NMR tool in foodstuff characterisation. Magn Reson Chem 49:S121–S125

    Article  CAS  Google Scholar 

  40. Bax A, Davis DG (1985) Mlev-17-based two-dimensional homonuclear magnetization transfer spectroscopy. J Magn Reson 65(2):355–360

    CAS  Google Scholar 

  41. Bodenhausen G, Ruben DJ (1980) Natural abundance N-15 NMR by enhanced heteronuclear spectroscopy. Chem Phys Lett 69(1):185–189

    Article  CAS  Google Scholar 

  42. Zhang JT, Zhang Y, Du YY, Chen SY, Tang HR (2011) Dynamic metabonomic responses of tobacco (Nicotiana tabacum) plants to salt stress. J Proteome Res 10(4):1904–1914

    Article  CAS  Google Scholar 

  43. Jolliffe IT (2002) Principal component analysis, 2nd edn. Springer, Berlin

    Google Scholar 

  44. Bylesjo M, Rantalainen M, Cloarec O, Nicholson JK, Holmes E, Trygg J (2006) OPLS discriminant analysis: combining the strengths of PLS-DA and SIMCA classification. J Chemometr 20(8–10):341–351

    Article  Google Scholar 

  45. Roemer E, Schorp MK, Piade JJ, Seeman JI, Leyden DE, Haussmann HJ (2012) Scientific assessment of the use of sugars as cigarette tobacco ingredients: a review of published and other publicly available studies. Crit Rev Toxicol 42(3):244–278

    Article  CAS  Google Scholar 

  46. Tobacco—production, chemistry and technology (1999) World Agriculture Series. Blackwell Science, Oxford

    Google Scholar 

  47. Stepanov I, Biener L, Knezevich A, Nyman AL, Bliss R, Jensen J, Hecht SS, Hatsukami DK (2012) Monitoring tobacco-specific N-nitrosamines and nicotine in novel Marlboro and Camel smokeless tobacco products: findings from round 1 of the new product watch. Nicotine Tob Res 14(3):274–281

    Article  CAS  Google Scholar 

  48. Baker RR, da Silva JRP, Smith G (2004) The effect of tobacco ingredients on smoke chemistry. Part I: flavourings and additives. Food Chem Toxicol 42:S3–S37

    Article  CAS  Google Scholar 

  49. Merckel C, Pragst F, Ratzinger A, Aebi B, Bernhard W, Sporkert F (2006) Application of headspace solid phase microextraction to qualitative and quantitative analysis of tobacco additives in cigarettes. J Chromatogr A 1116(1–2):10–19

    CAS  Google Scholar 

Download references

Acknowledgments

LS holds a Young Investigator Award from ANR (ANR-2011-JS08-014-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laetitia Shintu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shintu, L., Caldarelli, S. & Campredon, M. HRMAS NMR spectroscopy combined with chemometrics as an alternative analytical tool to control cigarette authenticity. Anal Bioanal Chem 405, 9093–9100 (2013). https://doi.org/10.1007/s00216-013-7354-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-7354-7

Keywords

Navigation