Skip to main content
Log in

Ion mobility spectrometry focusing on speciation analysis of metals/metalloids bound to carbonic anhydrase

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In the present work, traveling wave ion mobility spectrometry-mass spectrometry (TWIMS-MS) was applied to speciation analysis of metalloproteins. The influence of pH on complexation conditions between some metals and bovine carbonic anhydrase was evaluated from pH 6 to 9, as well as the time involved in their complexation (0–24 h). Employing TWIMS-MS, two conformational states of bovine carbonic anhydrase were observed with charge states of +12 and +11; these configurations being evaluated in terms of the folded state of the apo form and this protein (at charge state +11) being linked to barium, lead, copper, and zinc in their divalent forms. Metalloprotein speciation analysis was carried out for copper (Cu+ and Cu2+), lead (Pb2+ and Pb4+), and selenium (Se4+ and Se6+) species complexed with bovine carbonic anhydrase. Mobilities of all complexed species were compared, also considering the apo form of this protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lalli PM, Iglesias BA, Deda DK, Toma HE, As G, Daroda RJ, Araki K, Eberlin MN (2012) Rapid Commun Mass Spectrom 26:263–268

    Article  CAS  Google Scholar 

  2. Faull PA, Korkeila KE, Kalapothakis JM, Gray A, Barran PE (2009) Int J Mass Spectrom 283:140–146

    Article  CAS  Google Scholar 

  3. Shirran SL, Barran PE (2009) J Am Soc Mass Spectrom 20:1159–1171

    Article  CAS  Google Scholar 

  4. Araki K, Santos JJ, Toma SH, Lalli PM, Riccio MF, Eberlin MN (2012) Analyst 137:4045–4051

    Article  Google Scholar 

  5. McCullough BJ, Kalapothakis J, Eastwood H, Kemper P, MacMillan D, Taylor K, Dorin J, Barran PE (2008) Anal Chem 80:6336–6344

    Article  CAS  Google Scholar 

  6. Verbeck GF, Ruotolo BT, Sawyer HÁ, Giling KJ, Russell DH (2002) J Biomol Tech 13:56–61

    Google Scholar 

  7. Creaser CS, Griffiths JR, Bramwell CJ, Noreen S, Hill CA, Thomas CLP (2004) Analyst 129:984–994

    Article  CAS  Google Scholar 

  8. Hoaglund CS, Counterman AE, Clemmer DE (1999) Chem Rev 99:3037–3079

    Article  Google Scholar 

  9. Dwivedi P, Wu C, Matz LM, Clowers BH, Siems WF, Hill HH (2006) Anal Chem 78:8200–8206

    Article  CAS  Google Scholar 

  10. Smith DP, Giles K, Bateman RH, Radford SE, Ashcroft AE (2007) J Am Soc Mass Spectrom 18:2180–2190

    Article  CAS  Google Scholar 

  11. Valentine SJ, Clemmer DE (1997) J Am Chem Soc 119:3558–3566

    Article  CAS  Google Scholar 

  12. Kapron J, Wu J, Mauriala T, Clark P, Purves RW, Bateman KP (2006) Rapid Commun Mass Spectrom 20:1504–1510

    Article  CAS  Google Scholar 

  13. Guevremont RJ (2004) J Chromatogr A 1058:3–19

    CAS  Google Scholar 

  14. Barnett DA, Belford M, Dunyach JJ, Purves RW (2007) J Am Soc Mass Spectrom 18:1653–1663

    Article  CAS  Google Scholar 

  15. de la Mora JF, Ude S, Thomson BA (2006) Biotechnol J 1:988–997

    Article  Google Scholar 

  16. Giles K, Pringle SD, Worthington KR, Little D, Wildgoose JL, Bateman RH (2004) Rapid Commun Mass Spectrom 18:2401–2414

    Article  CAS  Google Scholar 

  17. Pringle SD, Giles K, Wildgoose JL, Williams JP, Slade SE, Thalassinos K, Bateman RH, Bowers MT, Scrivens JH (2007) Int J Mass Spectrom 261:1–12

    Article  CAS  Google Scholar 

  18. Eckers C, Laures AM, Giles K, Major H, Pringle SD (2007) Rapid Commun Mass Spectrom 21:1255–1263

    Article  CAS  Google Scholar 

  19. Thalassinos K, Slade SE, Jennings KR, Scrivens JH, Giles K, Wildgoose JL, Hoyes J, Bateman RH, Bowers MT (2004) Int J Mass Spectrom 236:55–63

    Google Scholar 

  20. Ahmed A, Cho YJ, No MH, Koh J, Tomczyk N, Giles K, Yoo JS, Kim S (2011) Anal Chem 83:77–83

    Article  CAS  Google Scholar 

  21. Santos LFA, Iglesias AH, Pilau EJ, Gomes AF, Gozzo FC (2010) J Am Soc Mass Spectrom 21:2062–2069

    Article  CAS  Google Scholar 

  22. Pessôa GS, Pilau EJ, Gozzo FC, Arruda MAZ (2011) J Anal At Spectrom 26:201–206

    Article  Google Scholar 

  23. Hurst TL, Wang D, Thompson RB, Fierke CA (2010) Biochim Biophys Acta 1804:393–403

    Article  CAS  Google Scholar 

  24. Krishnamurthy VM, Kaufman GK, Urbach AR, Gitlin I, Gudiksen KL, Weibel DB, Whitesides GM (2008) Chem Rev 108:946–1051

    Article  CAS  Google Scholar 

  25. Gudiksen KL, Gitlin I, Moustakas DT, Whitesides GM (2006) Biophys J 91:298–310

    Article  CAS  Google Scholar 

  26. Saito R, Sato T, Ikai A, Tanaka A (2004) Acta Cryst 60:792–795

    Google Scholar 

  27. Barnett JP, Scanlan DJ, Blindauer CA (2012) Anal Bioanal Chem 402:3311–3322

    Article  CAS  Google Scholar 

  28. Li YT, Hsieh YL, Henion JD, Ganem B (1993) J Am Soc Mass Spectrom 4:631–637

    Article  CAS  Google Scholar 

  29. Marshall AG, Hendrickson CL, Jackson GS (1998) Mass Spectrom Rev 17:1–35

    Article  CAS  Google Scholar 

  30. He F, Hendrickson CL, Marshall AG (2000) J Am Soc Mass Spectrom 11:120–126

    Article  CAS  Google Scholar 

  31. Lindskog S, Nyman PO (1964) Biochim Biophys Acta 85:462–474

    CAS  Google Scholar 

  32. Lomeli SH, Yin SRR, Loo RRO, Loo JA (2009) J Am Soc Mass Spectrom 20:593–596

    Article  CAS  Google Scholar 

  33. Chowdhury SK, Katta V, Chait BT (1990) J Am Chem Soc 112:9012–9013

    Article  CAS  Google Scholar 

  34. Clemmer DE, Hudgins RR, Jarrold MF (1995) J Am Chem Soc 117:10141–10142

    Article  CAS  Google Scholar 

  35. Nabuchi Y, Hirose K, Takayama M (2010) Anal Chem 82:8890–8896

    Article  CAS  Google Scholar 

  36. Loo JA, Loo RRO, Udseth HR, Edmonds CG, Smith RD (1991) Rapid Commun Mass Spectrom 5:101–105

    Article  CAS  Google Scholar 

  37. de la Mora JF (2000) Anal Chim Acta 406:93–104

    Article  Google Scholar 

  38. Gudiksen KL, Urbach AR, Gitlin I, Yang J, Vazquez JA, Costello CE, Whitesides GM (2004) Anal Chem 76:7151–7161

    Article  CAS  Google Scholar 

  39. Harrison AG (1997) Mass Spectrom Rev 16:201–217

    Article  CAS  Google Scholar 

  40. Nabuchi Y, Murao N, Asoh Y, Takayama M (2007) Anal Chem 79:8342–8349

    Article  CAS  Google Scholar 

  41. Templeton DM, Ariese F, Cornelis R, Danielsson LG, Muntau H, Van Leeuwen HP, Lobinski R (2000) Pure Appl Chem 72:1453–1470

    Article  CAS  Google Scholar 

  42. Gomez Ariza JL, Morales E, Sanches-Rodas D, Geraldes I (2000) TrAC 19:200–209

    Google Scholar 

  43. Guo Y, Ling Y, Thomson BA, Siu KWM (2005) J Am Soc Mass Spectrom 16:1787–1794

    Article  CAS  Google Scholar 

  44. Dunker K, Obradovic Z (2001) Nat Biotechnol 19:805–806

    Article  CAS  Google Scholar 

  45. Dyson HJ, Wright PE (2002) Curr Opin Struct Biol 12:54–60

    Article  CAS  Google Scholar 

  46. Wright PE, Dyson HJ (1999) J Mol Biol 293:321–331

    Article  CAS  Google Scholar 

  47. Kriwacki RW, Hengst L, Tennant L, Reed SI, Wright PE (1996) Proc Natl Acad Sci USA 93:11504–11509

    Article  CAS  Google Scholar 

  48. Coyne HJ, Baffoni SC, Banci L, Bertini I, Zhang L, George GN, Winge DR (2007) J Biol Chem 282:8926–8934

    Article  CAS  Google Scholar 

  49. Hussain F, Wittung-Stafshede P (2007) Biochim Biophys Acta 1774:1316–1322

    Article  CAS  Google Scholar 

  50. Bushmarina NA, Blanchet C, Vernier G, Forge V (2006) Protein Sci 15:659–671

    Article  CAS  Google Scholar 

  51. Apiyo D, Wittung-Stafshede P (2002) Protein Sci 11:1129–1135

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Fundação de Amparo a Pesquisa do Estado de São Paulo (São Paulo, Brazil) and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (Brasília, Brazil) for financial support and fellowships. We are also grateful to Prof. Carol H. Collins for language assistance and Alexandre Ferreira Gomes for helping the authors with some experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Aurélio Zezzi Arruda.

Additional information

Published in the topical collection (Bio)Analytical Research in Latin America with guest editors Marco A. Zezzi Arruda and Lauro Kubota.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pessôa, G.S., Pilau, E.J., Gozzo, F.C. et al. Ion mobility spectrometry focusing on speciation analysis of metals/metalloids bound to carbonic anhydrase. Anal Bioanal Chem 405, 7653–7660 (2013). https://doi.org/10.1007/s00216-013-7064-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-7064-1

Keywords

Navigation